Object Tools

http://www.0obj ect-tools.com

EiffelS

for Macintosh CodeWarrior

“Think Different ... Think Eiffel!”

VERSION: 1.0

CONTENTS
LY oo o= R 2
1.1. EiffelSTOr CW LICENCES......cooeeeeeerecese et e 2
1.2. Suggested CONfiQUIaLioN.........c.cccvieieresiesesee e ese et seesae e s 3
2. INSEAITING. . 4
2.1, INstallation PrOCEAUIEccveeiierieiese et 4
2.2, EXAMPIE PIOJECES ...ttt st e 4
3. Creating your own CodeWarrior Eiffel Project.........cccocceiviiiencneniennene 5
3.1, Crealing @PIrOJECE......eieteeetereete sttt s b e e bbb 5
3.2. Checking ProjeCt SEttINGS......ccvieiererierieieseeseeee et 7
3.3. Setting up EiffelS Compiler Information Files.........ccooeeeieieininincne 12
4. Compiling Your Eiffel PrOJECt........ccovvveviee e 14
4.1, Compiling Eiffel FIlES......ccoooeieceeeecese e 14
4.2. Compiling C and LiNKiNgcccceoriminininiene e 17
5. Creating your own CodeWarrior Eiffel librariescccccvceveiceneennnns 18
6. ASSErtion MONITOIING......cccvieiieiiieeiie et eere e 19
7. Eiffel Source-Level DeDUGQING.ccoververrerierierierieeeeeeeesee e 21
7.1. Enabling the debUGOET ..o 21
7.2. Example DebUQQEr SESSIONcccveeieieriiriesieseeseeee e seeeses e seestesse s sse e s 23
7.3, SOME COMVENTIONS ...ttt 24
7.4. Debugger COMMEANAS.......ccceirieuirieerieerieesieesie sttt 25
8. Description and Dictionary FileS........cccovviiiiiiciicce e 31
8.1, COMVENTIONS ...ttt 31
8.2. Library diCtionaries.........coouvirieirieirieirierie et 32
8.3. Library desCriptions.........cccccveeieiiniinie s 32
9. KeyWord DEaIS.........ooiiiiriiiierieeeeeeeee s 37
10. Trouble SNOOLING......cceeierieie e ere et enre e 39
O 1 010 = o N (o T PR 43

INOEX e 49

Welcome

1. WELCOME

Welcome to Object-Tools EiffelS for CodeWarrior on Macintosh. Included
in this release are the EiffelS 2.0 compiler, the EiffelS CodeWarrior prefer-
ence panel, Eiffel Kernel libraries, the Mac OS Toolbox Eiffel Library
(MOTEL), and example projects. Follow these instructions to install these
filesin the correct places, and then how to set up your own Eiffel projects.

1.1. EiffelS for CW Licences

If you have loaded this off a free CD or from the Internet you may use this
under the Lite licence. With this licence you can use EiffelS for CW on a
trial basis. You should not use the Lite form for extended periods, and may
not use it to release commercial software, or to deploy software for use of
others within your company. The Lite licence limits the size of systems that
you can compile, so once your application grows to a certain size, you will
get a syntax error and not be able to generate code. We want to make it as
easy as possible for you to use EiffelS, but in order to provide support and
better future releases, we are dependent on your support.

The commercial licence entitles you to full compilation facilities, and to
deploy and resell software created with EiffelS for CodeWarrior. Contact
Object-Tools at

i.joyner@acm.org (lan Joyner Australia)

or

fm@object-tools.com (Frieder Monninger Europe)
gfrank @obj ect-tools.com (Gudrun Frank US)

to obtain afull licence.

Also see the Object Tools Web site at:

Suggested Configuration 3

http://www.obj ect-tools.com.

The full licence costs $US149. This licence includes the full compiler,
and the MOTEL library. This is for a single seat licence. For site licences
and University department licences, please contact Object-Tools. Full sup-
port is also not included with the Lite version, however, we will accept com-
ments and problems that you encounter, especially since you will probably
want any problems you have with your installation ironed out before you
pay for afull licence.

If you do not have Internet access, please send International Money
Order (personal cheques not accepted except in Australian dollars) to:

Object Tools

attn. lan Joyner

14 Summerhaze Place
Hornsby Heights
Australia 2077

Phone +61 2 9477 3474

Object Tools

attn. Gudrun Frank
418 Parkview Way
Newtown, PA 18940
Phone 215-504 0854

Object Tools

attn. Frieder Monninger

Nordstr. 5

D 35619 Braunfels

Phone: 6472 911 030 Fax: 6472 911 031

Please enclose your name and address (email address) for usto return afull
licensed version.

1.2. Suggested Configuration

PowerPC Mac with at least 32MB memory. CodeWarrior Pro 2 (should
work on 1, might work on earlier).

Installing

2. INSTALLING

2.1. Installation Procedure

You will have downloaded two files, Eiffel SCWCore.sit and Eiffel SCWSup-
port.sit both files are required.

1. Copy the compiler (EiffelS) to your CodeWarrior Plugins. Com-
pilersfolder.

2. Copy the EiffelS preference panel (EiffelS Panel) to your
CodeWarrior Plugins. Preference Panels folder.

3. Copy the EiffelS2 libraries folder to your MetroWerks: MetroW-
erks CodeWarrior folder.

4. Copy the Eiffel folder from the EiffelS2:(Project Sationary)
folder to your MetroWerks: MetroWerks CodeWarrior: (Project
Sationary) folder.

Your EiffelSinstallation is complete.

2.2. Example Projects

There are several example projects included in the release, Hellowbrld, Si-
lyBalls, and Mondrian. You should examine and compile these first, since
this is a good introduction working with EiffelS for CodeWarrior and to
programming with the MOTEL library. Note the first compiles will take a
long time because all libraries must be compiled for each project. Subse-
guent compiles are much faster.

Creating a project 5

3. CREATING YOUR OWN CODEWARRIOR
EIFFEL PROJECT

EiffelS for CodeWarrior has been developed from the UNIX version of
EiffelS to be as closely integrated with CodeWarrior as possible. To this
end, we have changed quite a bit from the UNIX version to do thingsin a
more Mac-like way and to make things more convenient for the program-
mer. Follow the instructions and guidelines in this section in order to set up
your Eiffel projects with aslittle fuss as possible.

Those familiar with creating projects with CodeWarrior will find creat-
ing an Eiffel project straightforward because there is very little difference.
Most of the information in this section can be skipped, but we include it for
compl eteness.

3.1. Creating a project

» Choose New Project from IDE File menu

New Project

Select project stationery:

E Project Stationery
< Mac0S
- + +
- Eiffel
A Mac0S Toolbox
Mac0S Toolbox PPC
A Standard Console
Std Eiffel Console PPC —
P Pascal s
[PowerPlant bed
[Create Folder

Tu]

| Cancel] | OR |

Figure 1. New Project Panel

* Openthe MacOSEiffel/ path and one of:

6 Creating your own CodeWarrior Eiffel Project

MacOS Toolbox PPC for a Toolbox project
Standard Console PPC for atext based console project.

Note: if the Eiffel section does not appear in the New Project
Panel, make sure you copy the Eiffel folder from the
Eiffel S2: (Project Sationery) folder to the Metrower ks CodeWar-
rior:(Project Sationery) folder.

» Choose a project name. This name must match the project name
you will later enter in the EiffelS 2.0 L anguage panel, so this name
should not contain any specia characters or blanks.

* Ensure the path is in the MetroWerks:MetroWerks CodeWarrior
folder and choose save. (The Eiffel project folder must be in here
because CodeWarrior makes this the starting directory for the com-
piler, so it isimportant for the compiler to be able to find things.)

You now have a default Eiffel project that looks asin figure 2.

[Mnrian) =—"——=08

[[linkOrder [Targets [
|0. PPC Debug Mac0S Toalbox vI §| 3 I@I o I

{8 MsSL CPPC Lib 76392 17822
MSL C++.PPC.Lib 119236 46149
B2 MSL SI0UX PPC Lib 17900 2283

|E [#] _File | _Code| Data) 3
< [Sources 300 55 e (3]
B Mondrian.ess n/a nfa e =
Mondrian.e néa nfa e @
B Mondrian_view.e nfa nfa e =
B Mondrian_Window .e nfa nfa e @
MOTEL _rnain.c 300 55 e @
Library description.es2 n/a nfa e =
B Library dictionary .es2 n/a nfa e =
P ¢ [f Generated 759K 276K o @
= [Resources 0 0 « @
[, Mondrian.rsrc nfa nfa e =
< [Mac Libraries 167K 35K « (3]
B2 MSL RuntimePPC.Lib 14244 4212 » =
BB InterfaceLib] 0 e @
B8 MathLib] 0 e =
B EiffelS Runtime PPC.lib 130840 29507 e =
MOTEL PPC.lib 26188 2430 e (2]
~ Q ANSI Libraries 208K 64K =
. =
. =
. =

SLe) |

121 files 1.11M 376K

Figure 2. Eiffel Project Panel

Checking Project Settings 7

3.2. Checking Project Settings

You should check the following are set up correctly, or tailor the settings as
desired.

* Choose <Project> Settings from Edit menu or click Settings but-
ton in project panel.

» Target Settings

Leave asisfor chosen project or tailor as desired.
» Access paths

Leave asisfor chosen project or tailor as desired.
» Build Extras

Leave asisfor chosen project or tailor as desired.
* File Mappings

The following settings will be set in the File Mappings panel as
shown in figure 3.

[0 =-—————————PPC Debug Mac0S Toolbox Settings =————————— &
E Target Settings Panels | IE File Mappings
I Target % —
Target Settings File Type [Extension ‘ @ ‘ ‘if | | 0 [Comnpiler
Acgess Paths TEXT o Mw C/C++ PPC
Bylld Ex\r‘as TEXT °p Mw C/C++ PPC
File Mappings TEXT £pp MW C/C++ PPC |
PPC Target TEXT e =
I Language Settings es
- - .
C/C++ Language < TEXT 838 . EiffelS
C/C++ Warnings = £xp
EiffelS 2.0 Lanquage TEXT o er
Pascal Langu@;e TEXT h e MWC/C++ PPC z
Pascal Warnings TEXT | . Flex Preprocessor v
PPCAsm
Rez — Mapping Info
I Code Generation : N
3 Choose... F
Global Optimizations File Type: | TEXT Extension m
PPC Processor Flags: compi@:| Eiffel5 3
PPC Disassembler esource Fils —
< Linker — Launchable [Add | [change | [Remove |
FTP PostLinker — Precompiled
PPC |inker hed lgnored by Mak
Factory Settings | | Revert Panel

Figure 3. File Mappings Preference Panel

.e files alow you to add Eiffel files to your project for conve-
nience. CodeWarrior does not pass these files directly passed to
the compiler. The EiffelS compiler searches for and processes all
.e files in the libraries and your project in a single execution.
This is the reason for the dummy file (.ess)—it fools CodeWar-
rior to start the Eiffel compiler; the compiler does not use this

Creating your own CodeWarrior Eiffel Project

file (hence it is completely arbitrary). The .e files do not need to
be added to your CodeWarrior project for the compiler to pro-
cess them.

The .es2 extension allows the library dictionary and library
description files to be added to your project.

Note that an Eiffel compiler must process al filesin one exe-
cution because the definition of the Eiffel language requires
many cross module consistency checks. Most other languages
leave such checks to a linker that often gives obscure errors (if
the linker catches them at all, and if not you have to debug such
errors at run time). Hence an Eiffel compiler will take longer
compiling than other compilers, but the thorough checking will
save much more debugging time and frustration. EiffelS also
keeps much information from its first and second passes in data-
base files, so once the files are compiled the first time, subse-
guent compiles are a lot faster. The third pass generates the C
files, and these are regenerated only when the source file has
been changed, so once Pass 3 is compl eted, subsequent compiles
are again much faster.

This also removes the need to create module header files sep-
arately, and to specify module dependencies (via make, etc.)

* <Processor> Target

These settings are shown in figure 4. In the File Name put what-
ever file name you want.

The Preferred and Minimum Heap Size should be set to at
least 684K. This is because Eiffel performs automatic memory
management for you, and it reserves 512K memory blocksfor its
objects. Thus the smallest block must be at least 512K plus alit-
tle extra. The Eiffel runtime will automatically alocate extra
512K blocks as needed if the space required for active objects
increases beyond 512K. You should increase your memory sizes
for your application appropriately if this happens.

Checking Project Settings

=

PPC Debug Mac0$ Toolbox Settings ="=————————

E Target Settings Panels

[P Target

= Target
Target Settings
Access Paths
Build Extras
File Mappings

I~ Language Settings
C/C++ Language
C/C++ Warnings
EiffelS 2.0 Langquage
Pascal Language
Pascal Warnings
PPCAsm

Rez

I~ Code Generation
Global Optimizations
PPC Processor

PPC Disassembler
= Linker

FTP PostLinker

PPC |inker

— Project Type:| Application

File Name [Mondrian

'SIZE’ Flags

Preferred Heap Size (k)
Minimum Heap Size (k)
Stack Size (k)

]

[Factory Settings |

| RevertPanel |

Figure 4. PPC Target Preference Panel

» C/C++ Language

These settings are shown in figure 5. Everything in this panel
should be disabled, except Relaxed Pointer Type Rules, Use
Unsigned Chars, and Enable bool Support - these must be
checked. Prefix File must be blank. Auto-Inline, Pool Strings,
and Don’t Reuse Strings may be set optionally, but will effect

your memory requirements.

O

PPC Debug MacoS Toolbox Settings ==——————————

IE Target Settings Panels

IE C/C++ Language

= Target
Target Settings
Access Paths
Build Extras
File Mappings
PPC Target
[Language Settings

C/C++ Warnings
EiffelS 2.0 Language
Pascal Language
Pascal Warnings
PPCAsm

Rez

I~ Code Generation
Global Optimizations
PPC Processor

PPC Disassembler
= Linker

FTP PostLinker

PPC linker

mil

[Activate C++ Compiler
[J 4RM Confor mance

[] Enable C++ Exceptions
[] Enable RTTI

[Auto-Inline
[M Pool Strings

Enable bool Support
[Enable wehar_t Support

[J ANSI Strict
[&NSI Keywords Only
[] Expand Trigraphs
[Multi-Byte Aware
Direct to SOM: | Off E

[J EC++ Compatibility Mode
[] Enable Objective C

]

[Factory Settings |

| Revert Panel |

Figure 5. C++ Language Preference Panel

Checking Project Settings

10

* C/C++Warnings

These are all reset—don’'t worry Eiffel has done many more
checks to ensure your code is correct than C/C++ will ever do.
Thisis shown in figure 6.

| PPC Debug Mac0S Toolbox Settings =]
E Target Settings Panels IE C/C++ Warnings
= Target =
Target Settings [J Treat &1 Warnings &s Errors
Access Paths [llegal Pragmas
Build Extras i
File Mappings [] Empty Declarations
PPC Target [Possible Errors
'~ Language Settings .
C/C++ Language [] Unused Yariables
[Unused Arguments
EiffelS 2.0 Lanquage

Pascal Language
Pascal Warnings

PPCAsm
Rez

'~ Code Generation

Global Opti

PPC Processor

PPC Disass

= Linker

FTP PostLi

PEC linker

[Extra Commas

[Extended Error Checking

[] Hidden Yirtual Functions

[Implicit Arithmetic Conversions

mizations [] Mon-Inlined Functions

embler

]

nker

Factory Settings | |

Revert Panel |

Figure 6. C++ Warnings Preference Panel

» EiffelS2.0Language

Enter the Project name. This must match the folder name where
you saved the project when you created the project. The name
must not contain specia characters or blanks.

Enter the Creation class and routine of your Eiffel system.
This will be the name of the class that is first executed, and the
routine that the runtime executes. The format for this is
<class>.<routine>, for example, HELLO.make,
MY_APPLICATION.get_going, etc.

Enter PROJECT in the Debug: text box. Enter the names of
the Eiffel libraries you will be using in either the Debug, Opti-
mize, or Final box. These boxes enable different levels of runt-
ime checking. Debug, for example, enables all assertions in
preconditions, postconditions, etc., and enables the Eiffel source
language debugger.

Optimize enables only preconditions and postconditions.
Final disables all assertions. The names of the libraries match
the names given in your projects Library dictionary.es2 file (see

11

Creating your own CodeWarrior Eiffel Project

later). These names will normally match the library foldersin the
Eiffel S2:Library folder, for example ELKS, EXKERNEL, RUNT-
IME, CONTAINER, MOTEL. You can also develop your own
libraries that other projects will use. The EiffelS preference

panel isshown in figure 7.

O PPC Debug MacOS Toolbox Settings

IE Target Settings Panels IE EiffelS 2.0 Language

I Target
Target Settings
Access Paths

from Object Too

(BETA release)

Build Extras Project: [MONDRIAN

File Mappings
PPC Target

Creation

[MONDRIAN.make

I Language Settings Debug
C/C++ Language

C/C++ Warnings

Optimize
Pascal Lanquage
Pascal Warnings

PPCAsm

Rez Final:
I~ Code Generation

Global Optimizations

PROJECT, KERNEL, EXTENDED_KERNEL, ELKS, MOTEL

PPC Processor
PPC Disassembler
I~ Linker

FTP PostLinker
PPC linker

Compiler: Michael S

WEB
Contacts

htt
Frieder Monninger
lan Joyner

]

rsion: lan Joyner

ject-tools.com
i.joyner@acm.org

[Factory Settings

J |

Revert Panel |

Figure7. EiffelS Preference Panel

<target> Linker

The linker panel for your target has Main set to execute main.
Ensure Initialization and Termination are blank. The linker

preference panel is shown in figure 8.

Setting up EiffelS Compiler Information Files 12
[0 =————————— PPC Debug Mac0S Toolbox Settings =]
E Target Settings Panels Iﬁ PPC Linker
Build Extras i)
File Mappings — Link Options
PPC Target [Generate S¥YM File [Suppress Warning Messages

'~ Language Settings
C/C++ Language
C/C++ Warnings
EiffelS 2.0 Language
Pascal Language

ﬂz Full Path in SYM Files
[Generate Link Map

Link Mode:| Faster Linking =

[Dead-strip Static Initialization Code
[Treat Multiple Definitions as Warnings

{uses more memory)

Pascal Warnings

L |
I B
I |

PPCAsm E_ — Entry Points
Rez

= Code Generation Initialization:
Global Optimizations .
PPC Processor Main:
PPC Disassembler

= Linker Termination:
FTP PostLinker
PPC PEF

= Editor =

L___Custar Kewwards =

[Factory Settings | | FRevert Panel |

Figure 8. PPC Linker Preference Panel

e Custom Keywords

These are setup in the project stationery—if you don't like the
defaults, you can change them. You can even change them in the

default project in the (Project Sationery) folder.

3.3. Setting up EiffelS Compiler Information Files

* Inthis step you will set up two files particular to your project, the
Library dictionary.es2 and the Library description.es2 files. There

is one dictionary file for each project and one description file for
each project and each library; libraries do not have adictionary file.

* The Library dictionary.es? and the Library description.es2 files go
in your project folder. The compiler will automatically create .pub
and .bin filesto go in the E2 data folder.

You may throw out the .pub and .bin files—the compiler will

regenerate them.

* Thelibrary dictionary.es2 file.

This file contains the path information about where the libraries

are. These will normally be in the EiffelS2 folder, and are path
relative to your MetroWerks CodeWarrior folder (or whatever

Creating your own CodeWarrior Eiffel Project

folder isthe default folder for CodeWarrior.) The Library dictio-
nary.es2 file looks like:

- Standard library dictionary

HELLO "HELLO'
ELKS "El FFELS2: i brary: el ks"
RUNTI ME "El FFELS2: | i brary: runti ne"

EXTENDED KERNEL "EI FFELS2:1i brary: exkernel "
CONTAI NER "ElI FFELS2: li brary: cont ai ner"
MOTEL "El FFELS2: | i brary: MOTEL"

Note the library names match the names you put in the EiffelS
2.0 Language preference panel. The first entry is your own
project, so this will match the project name in the panel, and the
folder name for the project.

You can aso use different versions of the libraries by using
different paths in the Library dictionary.es2 file. (See section 8
for afull description of the Library dictionary.es2 file.)

* TheLibrary description.es2 file.

Thisfile contains project information about the libraries that this
project uses. For your project, the specia library name
PROJECT is used. The other library names given in the use
clause must match the libraries given in your projects Library
dictionary.es2 file.

- Library description for the
- project library
open source |ibrary PROIECT

use ELKS, MOTEL
clusters
end -- library PROJIECT

Each library aso has its own Library description.es2 file.
They will be supplied with the library, so you need worry no
more about them. (See section 8 for a full description of the
Library description.es2 file.)

Compiling Eiffel Files 14

4, COMPILING YOUR EIFFEL PROJECT

(IMPORTANT NOTE: Thereis a problem with CW Pro 2/3 that causes the
compiler to not be reinitialized between runs. This means you will get an
error if you run the compiler a second time. All you need to do is force
CodeWarrior to unload the compiler by switching out of CodeWarrior to
another application: clicking on the desktop for instance. The workaround is
simple, but in our opinion annoying—sorry about that. MetroWerks have
accepted thisas abug, and it will probably be fixed in CW Pro 4.)

O=—————trmsalanins=—"——F18

I 1 IO ‘Errors and warnings for “Mondrian.z” A | v

il [«

4

Figure9. Compiler unloading error

(Another important note: .e files must not be open in the IDE when
EiffelS is compiling. Thisis also an annoying environmental factor that we
will attempt to fix in a future release. Make sure .e files are closed when
compiling, and that they are also not open in the CW Errors & Warnings
window.)

4.1. Compiling Eiffel Files
o Select the .essfile in the project window;

* Chose compile from the project menu (Cmd-K). Compiling the .ess
file will cause the compiler to be invoked, and it will automatically
compile .e files that need recompiling, based on updated files and
the dependencies between classes,

» The EiffelS compiler now reads the preferences from the EiffelS
preference panel;

15 Compiling Your Eiffel Project

» If the compiler cannot create the Project description.es2 file in the
ES2 data folder, you will get the error:

Error: Can't create Project description.es2
in the CW IDE error window.

The compiler then compiles your Library dictionary.es2, Library descrip-
tion.es2 files and Library description.es2 files from the libraries you have
listed in the use clause. If any problems are found in these files, they are
reported as syntax errors in the IDE errors window.

The compiler reports progress in the IDE build window. The compiler
works in four passes. The first pass checks the source files in your project
and libraries to seeif they or any files they have dependencies on have been
updated since the information stored in the dbase files. If so the second
phase of the first pass compiles these files.

The name of eachfile asit is being checked and compiled appearsin the
IDE build window:

Building Mondrian.p =]
Project: Mondrian.u Target: PPC Debug Mac0S Toolbox Stop
File | Task | File Count| Line Count
Mondrian.ess Compiling... 1 ‘ 0
ass 1: zoom_no_grow_window . e Totals: \ 1 [0

Figure 10. First pass

As each file is compiled the line count is updated in the IDE build win-
dow. Unfortunately, the total line count remains at O because the IDE
updates this only after acompileis complete. The line count is updated only
at the end of each file, so don’'t expect to see the line count going up rapidly
on largefiles.

Since Pass 1 checks and then compilesfiles, you will see twice the name
of the filesthat are recompiled (if you can read that fast)

Syntax errorsin pass 1 are linked to the source file, so double clicking
on the error will open the source file. Unfortunately, in subsequent passes,
the original file is not used, so only the library name, class name, line, and
column are reported, but thisis enough information to pin point each error.

Important: Since Eiffel S opens the source files directly, and not through
the IDE, unfortunately all .e files must be closed when compiling with
EiffelS. If afileis open in the error window, the error window must also be
closed in order to save thefile (this seemsto be abug in CW Pro 2). If a.e

Compiling Eiffel Files 16

fileis open when it is compiled, an obscure error isreported on thefirst line
of thefile.

Pass 2 checks some consistency information in each class. You will see
the class names as they are compiled:

Pass 2: MY_APPLI CATI CN

Pass 3 does more consistency checking but also generates the C code.

When regenerating C files, this is the longest pass. Progress information is
the same asin Pass 2:

Building mondridn_u = E
Project:|Mondrian.u Target: [PPC Debug Mac0S Toolbox Stop
File | Task | File Count| Line Count
Mondrian.ess ‘ Compiling... 1 ’ 282
¢ Pass 3: MONDRIAN Totals: | 1] (1}

Figure11. Third pass

Pass 4 is a clean-up pass, and results in no errors. Again it reports
progress on each class:

Builﬂing mondl‘iﬂn," = E
Project :[Mondrian. z Target: [PPC Debug Mac0S Toolbox Stop
File | Task | File Count| Line Count
Mondrian.ess ’ Compiling... 1 ‘ 282
<;ass 4: vr.Rﬂcm._scaoLL_BAR_> Totals: | 1 0

Figure 12. Fourth pass

Pass 4 is very fast. You should check that the compiler reaches pass 4
since, very occasionally, a database error causes the compiler to silently
giveup in pass 2 or 3. In this case you should remove the ES2 data folder as
described in the section 10. If the compiler should crash, an error file,
Eiffel2.err will usually be placed in the MetroWerks CodeWarrior folder.

The first EiffelS compile will take a long time because it must process
all the sources and generate all the C files. However, subsequent compiles
do not do this so each compile is done in an acceptable amount of time, pro-
portional to the number of changes you have made.

17 Compiling Your Eiffel Project

4.2. Compiling C and Linking

Unfortunately, CW IDE does not provide facilities to add files to a project
programmatically, or to schedule the .c files for automatic compilation. In
your Eiffel project there is a Generated group that will originally be empty.

Now add all the files that the EiffelS compiler generated in the ES2
Data: Code folder in your project folder. These files are named c0.c, cl.c ...
cn.c, and contain all the C files for al classes compiled from your own
project, as well as the libraries you use. Adding all the files from this direc-
tory also adds several .h files that are used for your Eiffel compilation
options. These files mean that the compiler does not have to regenerate any
.cfilesif you change the libraries from debug to optimizeto final, etc.

The EiffelS compiler has also generated the main.c and emain.c files. If
you are building a very simple program that does only console 1/0, also
keep the main.c file in the project. If you are building a toolbox application
using the MacOS library, then remove main.c from the project, since thefile
MacOS main.c from the Eiffel S2: Library: MOTEL folder contains the main
function. If neither of these do what you want, you can provide your own
main, and add it to the sources group. Do not store your own main in the
Code folder because the compiler will overwrite it.

Now all you need to do is run the C compiler and linker.

Subsequent Eiffel compiles flag to the IDE that C files have changed, so
you should observe the changed red check come up against a C file because
the EiffelS compiler regenerates it. However, the IDE is not 100% accurate
at picking up these files, so it is best to just compile with EiffelS first, and
then build later (at least with CW Pro 2).

Alsoif you add classes (and therefore .efiles) to your Eiffel system, new
.cfileswill appear. You will also need to add these to your Generated group.

Note that the EiffelS compiler always overwrites the correct .c file if the
source has changed. This information is kept in the dbase files. Thus if for
any reason you lose or throw out the code files, make sure you also discard
the admin and dbase folders which are al in the ES2 data folder.

Compiling C and Linking 18

5. CREATING YOUR OWN CODEWARRIOR
EIFFEL LIBRARIES

Read the section Creating a Library in section 8. To accomplish the steps
described there, you should set up your own IDE project for the library. No
specia settings need be given, this project will never be compiled, and is
only a convenient repository for your Eiffel files. Create a real project as
described above, and include your library name in your project’s Library
dictionary.es2 file, and EiffelS 2.0 Language preference panel. You can
then manipulate the library files using the library project.

The library does not have a dictionary file, but it does have a description
file that tells the compiler which other libraries the library uses. You should
also add the library into the uses clause in your project’s description file.

If you strike any problems remove the ES2 data folder from the library
folder.

19 Assertion monitoring

0. ASSERTION MONITORING

You can enable/disable assertion checks on a per library basis. To accom-
plish this you create afile rcl in the directory where the main project files
are. The compiler processes this file and creates an rcb file that the runtime
uses to determine the assertion settings. The syntax for thercl fileis:

require library_name.class name
ensure library _name.class_name
check library name.class name
loop_invariant library_name.class name
variant library _name.class name
invariant library name.class name
debug [(key_list)] library_name.class name

Comments are indicated by the standard Eiffel --.

All clauses are optional. library _name is either the name of alibrary or
the reserved keyword all (meaning all libraries used in the program).
class_name can also be either the name of a class or the keyword all. The
order of the clauses is irrelevant and each can be repeated as often as
desired.

debug has an optional list of keys that are strings (see Eiffel: The Lan-
guage for a detailed description of debug keys). For example:

debug ("TEST", "ANOTHER_TEST") KERNEL

enables the debug instructions labeled with the keys TEST or
ANOTHER_TEST in al classes of the library KERNEL.

Note:

By default all assertion checks are off. Assertion monitoring can also be
enabled and disabled in the Eiffel S source level debugger.

Compiling C and Linking 20

Anexamplercl fileis:

require PROJECT.all

ensure PROJECT.all

invariant PROJECT.all

--debug MOTEL .all

--debug ("events') MOTEL .all

--debug ("event_disk") MOTEL .all

--debug ("event_idle") MOTEL .all

--debug ("event_disk") MOTEL .all

--debug ("event_setup_menu") MOTEL .al
--debug ("event_menu_command") MOTEL .all
--debug ("event_key down") MOTEL .all
--debug ("event_high_level") MOTEL .all
--debug ("event_key up") MOTEL .all
--debug ("event_mouse_down") MOTEL .all
--debug ("event_mouse_up") MOTEL .al
--debug ("event_null") MOTEL .all

--debug ("event_OS"') MOTEL .al

--debug ("event_activate") MOTEL .all
--debug ("event_update”) MOTEL .all
--debug ("event_window") MOTEL .all

Notice that MOTEL gives many trace options that can be enabled by remov-
ing the comment characters --. Because of this level of tracing, MOTEL
helps you find out exactly what is going on in your application, as well as
helping you understand how MOTEL works.

21 Eiffel Source-Level Debugging

7. EIFFEL SOURCE-LEVEL DEBUGGING

You can use the CodeWarrior debugger, MWDebug. However, even if you
understand the EiffelS runtime, this proves very tedious. For this reason, a
source-level debugger is provided with EiffelS. Note that while the CW
debugger has a very nice interface, the EiffelS debugger is very text ori-
ented, and does not provide a pretty interface. Hopefully, thisis made up for
by the power of the debugger, which has some advanced features not found
in any other environment.

In summary, the MW debugger will really help only to debug the EiffelS
runtime environment, which you should never need to do, whereas the
Eiffel S debugger helps debug your applications at the Eiffel level. Thereisa
third even higher level of debugging provided in the MOTEL library, which
is enabled using the debug keysin the MOTEL library that are enabled in the
rcl file as previously explained. Thislevel can tell you exactly what has hap-
pened in the MOTEL library, which events have happened, and any other
important items at the MOTEL level.

7.1. Enabling the debugger

As shown in section 13 to enable the debugger, make sure that one or more
libraries are listed in the debug text box on the EiffelS preference panel.
Recompile with Eiffel with the .ess file as the source.

Enabling the debugger 22

IE Target Settings Panels I [E EiffelS 2.0 Language
I~ Target) = Eiffel5 2.0 for MetroWerks CodeWarrior
Tarqget Settings from Object Tools (BETA release)

Access Paths
Build Extras

File Mappings Creation MONDRIAN.make |
PPC Target

—
= Language Settings Debug < PROJECT, MOTEL >
C/C++ Language

C/C++ Warnings
EiffelS 2.0 Language | (| (ptimize
Pascal Language
Pascal Warnings
PPCAsm

Rez Final KERNEL, EXTENDED_KERNEL, ELKS
I~ Code Generation
Global Optimizations

Project: [MONDRIAN |

PPC Processor Compiler: Michael CW Yersion: lan Joyner
PPC Disassembler WEB
[Linker = Contacts o
FTP PostLinker —
PPC linker hd
[Factory Settings | [Revert Panel |

Figure 13. Enabling the debugger

Enabling debug changes the debug option in the <project>.h file. When
debug is set, the flag in the .h file should be:

#defi ne EDEBUG 2 1

(You do not have to set this, but if you have problems, check that the .h file
has been regenerated with this define.)

Then recompile with C.

You should ensure that CodeWarrior recompiles al the .c files for the
library you are debugging so that the option is picked up.

When you run your application, the debugger is automatically started in
a CodeWarrior SIOUX window, when the first routine in the library being
debugged is called. You will be prompted to run, step, enable breakpoints,
etc.

(NOTE: SIOUX has a current limitation of 32K in the window, after
which it dies. There is a new library announced that will enable standard
output windows of greater than 32K. For this reason, more voluminous out-
puts are sent to atracefilethat is placed in the same directory as the applica-
tion.)

23 Eiffel Source-Level Debugging

7.2. Example Debugger Session

The following figures show a debugger session, which illustrates the points
talked about in the following discussion.

Mondrian.out

g T2c610c4) PROJECT :MONDRIAN. make 80 LI9bp)

Class (MONDRIANI?
Feature [makel? | nput

Line? 73 Defau|t

1d d’RO.JECT:EENDRIAN.mk]e 873 . command
\ddress Curreng location | t
Breakpoint set at PROWECT:MONDR|AN.make npu

Q20 0T NEEIIECT - ONOR AN noke 2] command

- L o
Class [MONDRIANI?
Feature [makel? do_new
Line? 117

1l o

Objg

Promp

1> PROJECT:MONDRIAN.do_new 2117
2> PROJECT:MONDRIAN.make 873

Breakpoint set at PROJECT:MONDRIAN.do_new 2117

Prompt (J rzc670c4) PROJECT :MONDRIAN. make €0 (+bp]

Library [PROJECTI? MOTEL .
Class [MONDRIAN1? RECTANGLE Set a breakpoint
Feature [makel? paint
Line? 91

1> MOTEL:RECTANGLE .paint 891)
2) PROJECT :MONDRIAN. do_new 2117 Currently set breakpo| nts
3) PROJECT :MONDRIAN.make 873

Breakpoint set at MOTEL:RECTANGLE.paint sa1 RUN O Next breakpoint

Prompt
Prompt

[2c6f0c4] PROJECT:MONDRIAN.make 273 [r]: -bp

1> MOTEL :RECTANGLE.paint 2391
2> PROJECT:MONDRIAN.do_new 2117

3> PROJECT:MONDR AN .make 873 Rernove a bl’eaprI nt

S []

Pr ompt]

Output from MOTEL in response to mousedown chosing ‘ New’

Figure 14. Example debug session

Some conventions 24

Mondrian.out

Stopped| 1zes70e4 PROJECT:MONDRIAN.makP CTHTETTUioeEr S
1999/1/31 11:13:15: Mouse Down enu bar (45,4)

[2c6f0c4] PROJECT :MONDRIAN.donew 2117 [r]: h —

breakpg|n
Oc4] PROJECT:MONDRIAN.make 273
/’ [2c6f0c4] MOTEL:APPLICATION. start_events 243
[2c80904] MOTEL : EVENT_MANAGER.event_loop 2251

do new|| 1ze7r1141 MOTEL : MOUSE_DOWN_HANDLER . process €80 Stack
- [2c81114] MOTEL :HANDLER_L I1ST . on_menu_command & 133 HSt
[2c6f0cd] MOTEL : APPLICAT ION. on_menu_command £79 Istory

[2c6f0c4] PROJECT:MONDRIAN.do_new &117

Current: MONDRIAN [2c6f0c4] do new

new_window: Void —

window_rect: Void |Oca|S ——
[2c6f0c4] PROJECT :MONDRIAN.do_new 2117 [h]: ¢ —

Current: MONDRIAN [2c6f0cd]
done: BOOLEAN is false C b
is_in_background: BOOLEAN is false
mondrian_menus: MENU_LIST [2c6f104] Urrent 0 JeCt
mondrian_view: MONDRIAN_PICTURE [2c¢7f90c]
test_string: STRING [2c6f94c] is "A test string”
window_count: INTEGER is O

end

—
[2c6f0c4] PROJECT:MONDRIAN.do_new 2117 [cl: o

Ref? 2c80004 Object address

EVENT_MANAGER [2c80904]
active_v: INTEGER is 0O
auto_key_v: INTEGER is O
character_code: CHARACTER is '80°
convert_scrap: INTEGER is O TypeS

cursor_region: REGION [2c80164]
Class disk_v: INTEGER isM
event_code: INTEGER 1

event_handlers: ARRAY [HANDLER] [2c6f1c4]
event_mask: INTEGER is O
event_time: INTEGER is O

. high_level_event_v: INTEGER is O e
Field key_code: CHARACTER is 'S80 Dump speC|f|c
key_down_v: INTEGER is O H
names key_up_v: INTEGER is O Obj eCt
message: INTEGER is O
modifiers: INTEGER is O (from MOTEL)
mouse_down_v: INTEGER is O Va] ues

mouse_up_v: INTEGER is 0
os_code: INTEGER is O
os_v: INTEGER is O
resume_event: INTEGER is

sleep_ticks: INTEGER is 0
update_v: INTEGER is 0
x: INTEGER is O
y: INTEGER is O
end —

S [« T

[2c6f0c4] PROJECT:MONDRIAN.do_new 2117 [ol: |

Figure 15. Debugger output

7.3. Some conventions

Object addresses are output in square brackets, for example: [2acee74]. You
can copy and paste this address into other commands to find out further
information about the object at this location. Command and other defaults

25 Eiffel Source-Level Debugging

are also presented in square brackets. If the default is acceptable, just press
return—that is the input. For example

[2acee74] PRQIECT: MONDRI AN. nake @6 [s]:

is presented as the prompt at the current execution location. Here the first
address [2acee74] is the address of the Current object. [s] at the end of the
prompt indicates that single step is the default command; if you press enter,
another single step will be taken. The debugger also outputs other defaults
in square brackets to save you much typing.

Line numbers are indicated by the @ character.

Therest of the command prompt indicates the project, class, feature and
line number in the file where the debugger has halted program execution.
The line number corresponds to the file line number in the CodeWarrior
IDE editor. The CW IDE indicates thisline in the panel at the bottom left of
editor windows. You can position an IDE window at this line by clicking
this line number panel and entering the number directly. Thus it is easy to
relate what the debugger tells you to your Eiffel source.

7.4. Debugger Commands

The debugger prints out the following list when you input an unknown com-
mand or 2.

r-run
X - exit

u - run until

S- single step (into sub-routines)
t - single step (over sub-routines)
t/ - run to routine end

+bp - set break point

-bp - remove break point

bp - show break points

+ss - set snap shot

-SS - remove snap shot

Ss - show snap shots

h - history

w - where

c - Current object

c/ - deep Current object

0 - object

o/ - deep object

a- aray

b - bit

" -string_cmd -- "

am - assertion monitoring

Debugger Commands 26

+d - enable debug

-d - disable debug

+tl - trace lines

+tr - trace routine entry/exit
-tl - trace lines off

-tr - trace routines off

y - status

?-help

r-run

Runs the application up to the next encountered breakpoint, or until the
application terminates.

X - exit
Terminates the application.
u - run until

This prompts you for a location in the same format as a breakpoint. The
application runs until that location is reached. The breakpoint is removed
once it is encountered. (u sets atemporary breakpoint.)

S- single step (into sub-routines)

This single steps the application. Routines are entered as they are encoun-
tered.

t - single step (over sub-routines)

Thisisasingle step command as for s, except that encountered routines are
not entered.

t/ - run toroutineend

This runs the routine until the end, where the debugger stops for further
instructions. You can at this point use the history command to find the effect
on local variables (arguments cannot be changed in Eiffel), or the ¢ com-
mand to examine the state of the Current object.

+bp - set break point

This command prompts you for the library, class, feature and line of the
breakpoint to set. The default library, class, and feature are the current
library, class, and feature.

-bp - remove break point

This command lists the current breakpoints—you can remove a breakpoint
by the number.

bp - show break points

27 Eiffel Source-Level Debugging

This shows the currently set breakpoints.

For example, removing and then showing the remaining breakpoints:

[3034e84] PRQIECT: MONDRI AN. neke @ [+bp]: -bp
1) MOTEL: MOUSE DOMN HANDLER. process @6

2) MOTEL: RECTANGLE. pai nt @1

3) PRQJIECT: MONDR AN neke @3

Nunber ? 2

Br eakpoi nt at MOTEL: RECTANGLE. pai nt @1 renoved
[3034e84] PRQIECT: MONDRI AN make @ [-bp]: bp

1) MOTEL: MOUSE DOM HANDLER process @6

2) PRQJIECT: MONDR AN neke @3

+ss - set snap shot

Snap shot is a little like a breakpoint, except that when the location is
reached, a snap shot of the object executing at that location is taken. The
debugger does not stop as with a breakpoint. The snapshot taken is a deep
snapshot; that is, al objects that are connected transitively to the current
object are also output. Since you can dump an entire system this way, this
snapshot is output to the tracefile.

-SS - remove snap shot

This command lists the current snapshots—you can remove a snapshot by
the number.

ss - show snap shots
This shows the currently set snapshots.
h - history

This outputs the stack call chain history and outputs the arguments and
locals for the routine currently executing.

W - where

This prints out the current location in the application. As thisinformation is
output in the command prompt, it is mainly redundant.

c - Current object

This outputs the Current object:
[3034e84] PRQIECT: MONDRI AN make @3 [r]: ¢

Qurrent: MONDRI AN [3034e84]
done: BOOLEAN is fal se
nmondri an_menus: MENU LI ST [3034ec4]
nmondri an_vi ew. MONDR AN _PI CTURE [30456¢cc]
test_string: STRING [303570c] is "Atest string"
wi ndow count: INTEGER is O

end

Debugger Commands 28

[3034e84] PRQIECT: MONDRI AN. nake @3 [c]: s
c/ - deep Current object
This outputs the Current object and all subordinate objects.
0 - object
o alows you to monitor any arbitrary object given an object reference
address.
o/ - deep object

This is the same as 0, except all connected objects starting from the given
address are output.

a-array
aoutputs an array.

b - bit

b outputs atype of BIT N
" -string_cmd

" outputs a STRING object at a given address. This should be redundant
since al string values are included in other outputs.

am - assertion monitoring

am enables you to set and reset assertion monitoring at run time overriding
the settingsin thercl file.

[3122e44] PRQIECT: MONDRI AN make @ []: am
Li brary [PRQJECT] ?

d ass [MO\DR AN ?

Precondi ti ons? +

Post condi ti ons? +

Checks?

Loop invariants?

Loop variants? -

d ass invariants? +

Debugs?

[3122e44] PRQIECT: MONDR AN nmake @ [ani:

This example sets precondition, postcondition and class invariant monitor-
ing on the default library and class, PROJECT: MONDRIAN. It resets loop
variant monitoring and leaves checks and loop variants on their current set-
tings.

+d - enable debug

+d alows you to enable debug instructions at run time. For example the
MOTEL classHANDLER _LIST has the routine event_setup_menus:

29 Eiffel Source-Level Debugging

setup_menusis
local
it: ITERATOR
do
-- First setup the menus.
debug ("events’, "event_setup_menus")
stamp_time (true)
l0.put_string (": Setup Menus%N")
end

from
it ;= literator

until
it.finished

loop
l.item (it).setup_common_menus
it.forth

end

end

Notice the debug instruction: this contains instructions that will
be executed when any of the debug keys are set. This debug
instruction has two keys. events and event_setup_menus. The
events key enables many such debug instructions, whereas the
event_setup _menusis more specific to this debug instruction.

In the debugger, we set the event_setup_menus key as follows:
[2c6f 0c4] PRQIECT: MONDRI AN make @ []: +d
Li brary [PROJECT] ? MOTEL

d ass [MONDR AN] ? HANDLER LI ST
Key? event_set up_mnenus

-d - disable debug
-d allows you to disable debug instructions at run time.
+tl - tracelines

+tl writes atrace for every line executed to the tracefile. It can produce very
voluminous output but will save you much single stepping.

+tr - trace routine entry/exit

+tr writes a trace for every routine entry and exit to the trace file. It is less
voluminous than +tl. +tl and +tr used with snapshot provide avery powerful
tracing facility.

-tl - trace lines off

Debugger Commands

30

This ceases output of the line trace to the trace file.

-tr - trace routines off

This ceases output of the routine trace to the trace file.

y - status

Will give some status information (no information available as yet).
? - help

Output the command list.

31 Description and Dictionary Files

8. DESCRIPTION AND DICTIONARY FILES

The following sections provide a full description of the Library dictio-
nary.es2 and Library description.es2 files should you require the more
advanced forms available in these. You will most likely not need this infor-
mation until you create very large Eiffel projects.

8.1. Conventions
|dentifiers

Identifiers must begin with a letter and must be composed of letters, digits
and the underscore character only.

Literal strings

Literal strings follow the Eiffel conventions. They must be enclosed in dou-
ble quotes and Eiffel escape sequences (e.g. %N for the newline character)
can be used. Except in Eiffel sourcefiles, literal strings may not extend over
severd lines.

Comments

Comments follow the Eiffel convention. They begin with a double dash (--)
and extend to the end of the line.

Eiffel sourcefiles

An Eiffel source file must have the file extension .e. The name of thefileis
otherwise arbitrary. The file name does not have to match the class name,
but it isbest if it does. The compiler will automatically find out which class
isstored in thefile.

An Eiffel source file must contain exactly one class text.
Paths

Paths must be specified using the MacOS convention (i.e., : as component
separator). Paths are always given as literal strings.

Sourcefilesvs. binary files

The library dictionary and library description source files (explained in the
next sections) may be removed as soon as the compiler has translated them

Library dictionaries 32

(a.bin file of the same name has been produced). For example, if you don’t
want someone modifying the library description of library L, you can
remove the Library description.es2 file from the folder of the library after it
has been compiled.

8.2. Library dictionaries

Every Eiffel/S library has a name (an identifier) and its own directory (with
a number of subdirectories). The purpose of a library dictionary is to map
library names to paths. Thereisasingle library dictionary that you will find
in EiffelS2:LIB_DICT:Library dictionary.es2 Here is a compl ete example:

- Standard library dictionary

HELLO "HELLO'
ELKS "El FFELS2: | i brary: el ks"
RUNTI ME "El FFELS2: i brary: runti ne"

EXTENDED_KERNEL "El FFELS2: | i brary: exkernel "
CONTAI NER "EI FFELS2: | i brary: cont ai ner"
MOTEL "El FFELS2: | i brary: MOTEL"

This file tells the compiler that, e.g., library CONTAINER can be found in
the directory EIFFELS2:library:container. Where ever you need the ser-
vices offered by this library you can request them by simply writing

use CONTAINER

you don’t have to remember where this library can be found. Each project
has its own dictionary file that enables you to use different versions of
libraries for different projects.

The name of alibrary dictionary file must be Library dictionary.es2.

8.3. Library descriptions

Eiffel/S 2.0 offers a structuring mechanism called libraries. A library con-
sists of a set of related classes and is treated by the compiler as an entity in
its own right, just as classes. Typical examples of libraries are a container
library or MOTEL.

The main advantage of librariesis that the user does not need to remem-
ber how the library is built, which source files belong to it, where they can
be found. All this information is stored in a library description written by
the creator(s) of thelibrary. If you want to use library L just say use L.

33 Description and Dictionary Files

Every library hasits own directory that contains a number of subdirecto-
ries. Two of them are important for the user: the subdirectory ES? data and
the subdirectory eiffel source. The first contains the library description file
Library description.es2 and the second contains the source code (possibly
in further sub-directories). The compiler maintains a library database that is
stored in the subdirectory dbase.

Library descriptions are written in the simple library description lan-
guage (LDL). Instead of giving the formal syntax we explain the clauses
step by step. The overal structureis:

header clause
[use clauseg]
[clusters clause]
[hide clause]
end

Header Clause

First of al, alibrary has to have a name. Thus a library description starts
with

[open] [source] library name

where name is an identifier - the name of the library. The optional clauses
open and sour ce have the following meaning:

If a library is declared as being open then the EiffelS compiler is
allowed to modify the library database. Typically only libraries that are not
finished yet are declared as being open. But there are situations in which
even afinished library hasto be declared as open: suppose L1 isfinished, L2
is not and some class C1 in L1 inherits from some class C2 of L2. If C2is
modified in a way that would require to modify some database entries for
Clin L1 then thiswould fail if L1 was not open.

The optional sour ce clause ssimply indicates whether source code for the
library is available or not. For alibrary that is not open, the clause is mean-
ingless to the compiler. However, if the library is open and source is speci-
fied, the compiler will automatically check the source code against the
database. If some class C has entries in the database but its source file does
no longer exist, all entriesfor C will be deleted in the database.

The use of open and sourceis explained in the following table:

open source useif

yes yes source code is available and may need to be modified

yes no no source code available but database may need to be
updated

Library descriptions 34

no no no modifications necessary or desired
no yes don’'t use it (same meaning as no/no).

Use Clause

The next clauseisthe use clause. Although it’s optional, it is needed in most
cases. It lists all libraries that are used by the current library. To be more
precise: alibrary L1 uses alibrary L2 iff L1 is different from L2 and some
class Cl of L1 isaclient or adescendant of some class C2 of L2. If L1 uses
L2 then the library description of L1 must include a clause

uselL?
If it uses several libraries L1, ..., Ln then the clause becomes
uselLl, L2, .., Ln

It is not allowed to mention the same library twice in a use clause. The use
clause can be combined with renaming as follows:

use
L1
rename
A asB,
CasD
end,
L2,
L3
rename
UasV
end

A use clause with renaming of the form use L rename A as B end has the
following meaning: Library L contains a class named A. The current library
(i.e. the one in which the use clause appears) wants to use this class but
under a different name: B. Thus if some class in the current library refersto
B it actually refersto A. This mechanism is necessary if two different librar-
ies offer (export) a class under the same name and are both used by a third
library. The rules that govern renaming here are the same as those for
renaming Eiffel features. However, some classes cannot be renamed
because the compiler makes strong assumptions about them. These are:

GENERAL, ANY, COMPARABLE, NUMERIC, HASH-
ABLE, ARRAY, STRING, BOOLEAN, INTEGER, REAL,
DOUBLE, CHARACTER, POINTER, BOOLEAN_REF,
INTEGER _REF, REAL_REF, DOUBLE_REF,
CHARACTER_REF, POINTER_REF, BIT, NONE.

35 Description and Dictionary Files

Clusters Clause

Aswe mentioned in the introduction, the source code for alibrary is stored
in the subdirectory eiffel source of the library directory and in subdirectories
thereof. The clusters clause tells the compiler in which subdirectories of
eiffel sourceit shall look for Eiffel source files. The clause

clusters™, "cl", "c2:c3"
instructs the compiler to look for Eiffel source code in the subdirectories
‘eiffel source, 'eiffel source:cl' and 'eiffel source:c2:c3'

[Recall that the compiler assumes that Eiffel source files have the file exten-
sion .g].

If the clusters clause is omitted, the compiler expects all Eiffel sources
of thelibrary in eiffel source.

Hide Clause

Sometimes it is necessary to introduce some utility classes in alibrary that
are for implementation purposes only, and should be visible only to the
library itself. One may or may not wish to make these classes visible to
other libraries. If not, one can simply hide them by writing

hide C1, C2, etc.

Classes declared as hidden are useable only within their enclosing library.
This clause is optional. Note that those classes that cannot be renamed (see
above) can also not be hidden.

Flat libraries

If you find it inconvenient that the library description file and the Eiffel
sources must be placed in subdirectories of the library directory, you can
flatten the library asfollows:

Create a file with name flat in the library directory. Place Library
description.es2 in the library directory. The clusters clause will now be
interpreted as being relative to the library directory itself instead of relative
to the subdirectory eiffel source.

Note that the compiler is not interested in the content of the file flat—it
merely looks whether such afile exists or not.

Creatingalibrary

Library descriptions 36

In order to create alibrary you have to do the following:

a choose and create adirectory for the library.

b create a library description file Library description.es2. Use the
keywords open and sour ce in the description.

c Copy the source code of the library to eiffel source folder or appro-
priate subfolders thereof.

d Enter the name and path of the library in alibrary dictionary (see:
library dictionaries).

e Create a simple project that uses the library (it suffices to mention
the library name in the use clause of the project description).

f Compile the project.

[adapting ¢) and d) to flat libraries is straightforward].

Assoon asalibrary has passed pass 1 of the compiler, the source codeis
no longer necessary in order to use the library. You could then remove the
keyword sour ce from the library description and remove the source code (of
course only if you don’t want to modify it in the future).

Removing alibrary

In order to make a library inaccessible, smply remove its name and path
from any library dictionary that containsit. Then you can safely remove the
whole library directory (of course you will normally save the source code
and the library description file first).

37 Keyword Details

0. KEYWORD DETAILS

We have divided the Eiffel keywords into four categories that you will find
in the files Primary keywords, Secondary keywords, Warning keywords and
Basic types.

Primary keywords

These are the main keywords in Eiffel. We suggest attaching to the Custom
keyword set 1 with the colour blue.

class, create, creation, do, else, elseif, end, expanded,
export, feature, from, frozen, if, indexing, infix, inherit,
inspect, is, like, local, loop, precursor, prefix, redefine,
rename, select, strip, then, undefine, until, variant, when

Secondary keywords

These are the secondary keywords in Eiffel. We suggest attaching to the
Custom keyword set 2 with the colour green.

Warning keywords

These are the other keywords of Eiffel. They could be included with the pri-
mary keywords, but a different colour will help flag a different to the usua
situation. The design by contract keywords (assertions, invariants and
exception handling, therefore with words that can be affected in the RCL
file) keywords have also been included in this set. We suggest attaching to
the Custom keyword set 3 with the colour brown.

check, debug, deferred, ensure, external, invariant, obso-
lete, once, require, rescue, retry, separate

Library descriptions 38

Basic types

These keywords identify basic types. We suggest attaching to the Custom
keyword set 4 with the colour purple.

BIT, BOOLEAN, CHARACTER, DOUBLE, INTEGER,
NONE, POINTER, REAL, STRING, TUPLE

39 Trouble Shooting

10. TROUBLE SHOOTING

Error: Can't create Project description.es2

Ensure your project folder is in the MetroWerks: MetroWerks
CodeWarrior folder. Make sure the project name in the EiffelS 2.0
Language panedl is the same as your project folder.

Error: Can't create Project description.es2. Ensure Project name in Eiffel S2
Panel matches the folder name.

Ensure the EiffelS2 folder is in the MetroWerks:MetroWerks
CodeWarrior folder and that the name is the same as in the EiffelS
panel project entry. The project name and the folder name must not
contain blanks or specia characters.

Error: Dictionary file Library dictionary.es2 doesn't exist or you don't have
read permission. Project desription.es2 line 1 project <PROJECT>

Make sure that the Library dictionary.es? file is present in the
project folder.

Error: The binary file "<DRIV E>:metrowerks:metrowerks codewarrior:ES2
datacLibrary desctription.bin™ doesn't exist.

Make sure that the Library description.es2 is present in the project
folder or Library description.bin file is present in the ES2 data
folder. You do not need a Library description.es2 file if you have the
Library description.bin file. In thiscase alibrary is closed.

Error: The library "PROJECT" cannot be used because it has not success-
fully passed ECC (pass 1).

Make sure al the .e files for your project are in the Eiffel source
folder in your project folder.

Error : Lexical error: Unknown symbol "
Library dictionary.es2 line 1 -- Standard library dictionary

Library descriptions 40

Make sure that the Library dictionary.es2 is not open, either in
CodeWarrior or any other application.

The compiler mysteriously stops during Pass 2 or 3.

Find thefile eiffel2.err and open it. Thiswill give clues asto why the
compiler failed (for example 1/O error). (Yes a stack dump on the
Mac, not system error or core!)

Try recompiling. If the compiler keepsfailing:

Sometimes the generated compiler files get corrupted. Remove the
ES? data folder from your project folder. If you are developing a
library as well, remove the ES2 data folder from the library folder.
Recompile: thiswill cause the regeneration of all files.

Error: Keyword "class" expected reported on line 1 of a.efile

Ensure file is closed and also that it is not open in the IDE Error
window.

Error: Compiler reports undefined item, but there is no item like it near the
line in the reported class.

This is probably an error in an inherited invariant, precondition or
postcondition. Search all ancestors of the class, and check the
reported error line in those classes. You will probably find an item
with the name at one of those lines. This will probably indicate a
problem with inheritance, and you will have to rename/redefine the
feature causing the clash.

Compiler reports strange error on first line of a.efile.

Ensure .efileisnot open in CW IDE. Ensurethefile is also not open
in the IDE Error window.

Compiler quickly reports "Error: Due to CW 2 problem, please click on
desktop..." asasyntax error.

Thisisaproblem that CW does not unload the compiler after acom-
pile. It is easy to force CW to do this: either click on the desktop to
force CW to swap, or do a C compile or link. Object-Tools is work-
ing with MetroWerks to get a permanent fix to this problem.

After a seemingly successful compile (compiler has progressed through to
Pass 4), compiler reports: "Error: Dueto CW Pro 2 problem, please click on
desktop..."

M Trouble Shooting

In the "File Mappings" preference panel, make sure you have set up
a.essfile. There should be only one .ess file added to your project—
its contents does not matter, it is simply used to get CodeWarrior to
invoke the Eiffel compiler once. The .ess file must be mapped to the
EiffelS compiler in "File Mappings".

Ensure that the compiler in "File Mappings' for .e filesis None, not
EiffelS, otherwise the Eiffel compiler will be invoked for every .e
file, even though it has already compiled them all. This is because
Eiffel compilers do their own dependency analysis, they do not need
external help of make files, environments, etc., to work out what to
compile. The downside to this is you must put all files where the
compiler can find them and put paths to libraries in your Library
dictionary.es2 file. On the upside, al Eiffel projects will be orga-
nized in asimilar way.

Compiler reports: Class not declared as deferred although it has a deferred
feature, but does not report which file is the problem.

Thisisaknown problem we have not been able to ascertain afix to.
All other known errors report the error file correctly in pass 1.

Check recently modified files: if any have deferred features, ensure
the classis also declared as deferred. You might also notice the name
of thefilein error in the CW build panel just before compiler termi-
nates.

Compiler reports errors on paths that do not exist on your machine.
If this is a project that you have copied from another machine,
remove the ES2 data folder.

Compiler hangs must reboot.

Check that you have not run out of disk space. The compiler has
reported that it cannot create or open compiler files to the IDE, but
these are not displayed for some reason. Free up space on your disk.

Compiler does not detect VTCG(2)

If you declare a generic type, but do not put any actual generic list,
EiffelS fails to report the VTCG(2) error. Obscure C syntax errors
will result. Workaround: Supply correct number of actual generics.

C compiler error

A rare and difficult to track error occurs that C compiler reports that
a function of the form _ETexpanded_| NTEGER is not found.

Library descriptions

42

This rarely occurs when an expanded type is used as an actua
generic. If this happens and you have a simple example please report
it to Object Tools. Workaround—find a copy of

ETexpanded| NTEGER in another .c file and copy it into the
erroneous file.

43 Interfacing to C

11. INTERFACING TO C

You can accomplish most interfacing to C in CodeWarrior can be done by
using aroutinethat is declared as exter nal (rather than deferred or do). The
MOTEL library has many examples of this. However, if you need a more
sophisticated interface to C, including being able to create Eiffel objects
from C and accessing the internals of objects from C, you should use the
following include file in your C libraries. Interfacing techniques and the
Cecil library are fully described in Chapter 24 of Eiffel: The Language by
Bertrand Meyer.

#i fndef CEC L

/* __ */
/* Eiffel/S 2.0 Cecil include file */
/* __ */
#define CEC L 1 /* Cecil included */

/* __ */
/* Effel <-> Ctypes */
/* */
/* Note: Cecil routines which return Eiffel objects of non-basic */
/* type return a pointer of type 'EIF_PROXY' . This nay or may */
/* not be a pointer to an Eiffel object. To obtain a true */
/* pointer to the Eiffel object, use 'eif_access'. */
/* */
/* \Mrning: */
/* Any assunption about the true nature of EIF_ PROXY's is */
/* non-portable. Using a proxy as if it were a pointer to */
/* an E ffel object may cause havoc. */
/* __ */
t ypedef unsigned char *EIF BT,

t ypedef unsigned char El F_BOCOLEAN,

t ypedef unsigned char El F_CHARACTER

t ypedef doubl e El F_DOUBLE;

typedef |ong El F_| NTECER

t ypedef unsi gned char *El F_CBIREF,;

t ypedef unsigned char *El F_PQ NTER,

t ypedef char *El F_PROXY;

t ypedef doubl e El F_REAL;

Library descriptions

44

/ K o e o e */
/* Type descri ptor */
/ K o o e */
typedef unsigned char *El F_TYPE_I D,

/ K o e o e */
/* Function pointer types */
/* */
/* Note: Cecil routines which return routine pointers return a */
/* pointer of type 'EIF xxx_FN or '"EIF_PROC. To call the */
/* routine, use the "eif_?? call' features. */
/* */
/* \Nar ni ng: */
/* Any assunption about the true nature of 'El F_xxx_FN */
/* pointers is non-portable. Wsing such a pointer as if */
/* it were a routine pointer may cause havoc. */
/ K o o o e o e */
typedef unsigned char *El F_PRCC,

typedef unsigned char *El F_BOOLEAN FN

typedef unsigned char *El F_CHARACTER FN

typedef unsigned char *El F_DOUBLE_FN,

typedef unsigned char *El F_| NTEGER _FN,

typedef unsigned char *El F_BIREF_FN

typedef unsigned char *El F_PA NTER_FN

typedef unsigned char *El F_PROXY_FN

typedef unsigned char *El F_REAL_FN

/ K o o o e */
/* Eiffel/S types needed for the inplenentation of Cecil */
/ K o o o e */
typedef void (*EIF_S V)(ElF_ BIREF, ...);

typedef El F_BOOLEAN (*BEIl F_S B) (Bl F_CBJREF,);

typedef El F_CHARACTER (*BElF_S O (B F_CBIREF, ...);

typedef ElF_| NTEGER (*BEIF_S I)(BF_ BIREF, ...);

typedef El F_ OBIREF (*ElF_S O (B F_CBIREF,);

typedef El F_PQA NTER (*ElF_S P)(BElF_CGBIREF, ...);

typedef El F_PROXY (*ElF_S _PXY) (B F_BIREF, ...);

typedef E F_REAL (*ElF_. S R(BIF_ BIREF, ...);

/ K o e o e = */
/* Eiffel/S runtine routines needed for the inplenentation of Cecil */
/ K o e */
extern void ES2RT_bit_put (EIF_BIT, EIF_BOOLEAN, ElF_INTEGER;

extern El F_BOOLEAN ES2RT bit_item (EIF BT, E F_INEGER;
extern ElF_ | NTEGER ES2RT bit_count (EIF_BIT);

extern ElF_ | NTEGER ES2RT_array_count (El F_CBIREF);

extern ElF_PQA NTER ES2RT array_to _external (ElF_CBIREF);
extern El F_CHARACTER ES2RT array_type_code (El F_OBIREF);

extern El F_I NTECER ES2RT_string_count (E F_CBIREF);

extern E F_CHARACTER *ES2RT_string_to_external (E F_CBIREF);
extern void ES2RT_nmem adopt (El F_CBIREF);

extern void ES2RT_nem wean (El F_CBIREF);

extern EIF BT ES2RT nembit_create (E F_CHARACTER *);
extern El F_PROXY ES2RT_nem string_create (El F_CHARACTER *);

45 Interfacing to C

extern E F_PROXY ES2RT _nem array_create (E F_PQA NTER
El F_I NTEGER,
EIF_ TYPE ID);
extern ElF_PROXY ES2RT nemcreate (ElF TYPE ID);
extern EIF_TYPE ID ES2RT_type_type_id (El F_CHARACTER *);
extern EIF_TYPE ID ES2RT_type_generic_id (Bl F_CHARACTER *, ...);
extern EIF_TYPEID ES2RT type_bit_type (E F_I NTEGER);
extern EF_| NTEGER ES2RT_type_generic_count (EIF_TYPE ID);
extern EIF TYPEID *ES2RT_type_generics (BEIF_TYPE ID);
extern EIF_TYPEID ES2RT _type_typeof (ElF _CBIREF);
extern ElF_CHARACTER *ES2RT_t ype_basecl ass (EIF_TYPE_ID);
extern ElF_CHARACTER *ES2RT_type_nane (EIF_TYPE ID);
extern EF_TYPEID ES2RT_type_expanded (EI F_TYPE ID);
extern EF BOOLEAN ES2RT_type_cecil _conforns_to (El F_TYPE I D,
EIF_TYPE ID);
extern EIF SV ES2RT _di sp_proc_prep (E F_PROO);
extern EIF. S B ES2RT_di sp_bool ean_prep (El F_BOOLEAN FN);
extern EFSC ES2RT_di sp_character_prep (E F_CHARACTER FN);
extern EF_ S| ES2RT_di sp_i nteger_prep (El F_I NTEGER FN);
extern EIF S O ES2RT _di sp_objref _prep (El F_BIREF_FN);
extern EIF SP ES2RT _di sp_pointer_prep (EIF_PQ NTER FN);
extern EF_S PXY ES2RT _di sp_proxy_prep (El F_PROXY_FN);
extern EF.SR ES2RT_di sp_real _prep (EIF_REAL_FN);
extern ElF_PA NTER ES2RT_di sp_r di spat ch (El F_CHARACTER *,
EIF TYPE ID);
extern EF PO NTER ES2RT_di sp_ddi spat ch (El F_OBIREF,
El F_CHARACTER *);
/ K o e o o o e o e e e e e e e e e e e o */
/* Predefined val ues */
/ K o o o e - */
#define El F_FALSE ((El F_BOOLEAN) 0)
#define El F_TRUE ((El F_BOOLEAN) 1)
#define EIF_VA D ((BEIF_CBIREF) 0)
/ K o o o e - */
/* Conveni ence features for some fundanental classes */
/* */
/* These features allow you to create and nmani pul ate obj ects of */
/* type BIT, ARRAY and STRINGin a conveni ent way. */
/ K o e o e o */
/* ARRAYs */
/ K o o o o o e e e e e e e e e o e e e e e e o */
#define eif_array_count (0) ES2RT array_count (eif_access(0))

#define ei f_array_make_fromc(s,c,t)

ES2RT _nem array_create((s), (c), (t))

#define eif_array_to_c(o0) ES2RT_array_t o_ext ernal
(eif_access(0))

#define ei f_array_ki nd(o) ES2RT array_type_code
(eif_access(0))

#define ei f_bit_count ES2RT _bi t _count

Library descriptions 46

#define ei f_bit_nake fromc(b) ES2RT_nem bi t _creat e((El F_CHARACTER
*) (b))

#define eif_bit_iten{o,p) ES2RT_bit_iten((0), (p))

#define eif_bit_put(o,x, p) ES2RT_bi t _put ((0), (El F_BOOLEAN)
(x),(P)
/2 */
/* STRI NG */

| ® o e e o e e e e e e e e e e e e e */
#define ei f_string_count(0) ES2RT_string_count (eif_access(0))

#define eif_string_make_fromc(s) ES2RT_mem st ri ng_creat e(\
(Bl F_CHARACTER *)(s))

#define eif_string_to_c(o0) ES2RT_string_to_external

(eif_access(0))

/* __ */
/* Cbject creation */
/* */
/* Note: The fields of an object created with "eif_create' are all */
/* initialized to the proper default val ues. However, if the */
/* generating class of the new object has creation procedures */
/* then you have to call one of themto ensure that the new */
/* obj ect satisfies the class invariant. */
/* __ */

#define eif_create ES2RT nemcreate

/* __ */
/* (bj ect access */
/* */
/* To obtain a true reference to an Eiffel object froma pointer of */
/* type 'EIF_PROXY', you have to use 'eif_access'. */
/* */
/* Warning: Do not store the result of a call to 'eif_access' for */
/* future reuse! The object represented by the proxy nay */
/* nove. */
/* __ */
#define ei f_access(p) ((BElF_OGBIREF) (p))

/* __ */
/* Cbject protection */
/* */
/* 1If you want to store an EIF_PROXY for reuse in future activa- */

/* of a Croutine, you nust protect it to ensure that the garbage */
/* collector will not reclaimthe object associated with the proxy. */

/* The feature "eif_adopt' serves this purpose. */
/* */
/* If protection is no |onger needed, use 'eif_wean' to unprotect */
/* the object associated with a proxy. */
/* __ */
#def i ne ei f _adopt ES2RT_nem adopt

#define ei f_wean ES2RT_wean

/* __ */
/* Type id's */

/* __ */

47 Interfacing to C
#define eif_base cl ass ES2RT_t ype_basecl ass
#define eif_bit_type_ id ES2RT_type_bit_type
#define ei f_expanded ES2RT _type_expanded
#define ei f_generic_count ES2RT_type_generi c_count
#define ei f_generic_id ES2RT _type_generic_id
#define ei f_generi cs ES2RT_type_generics
#define ei f_type_id_of _object(0) ES2RT_type_typeof (eif_access(0))
#define eif_type_id(n) ES2RT_type_type_id ((E F_CHARACTER
*)(n))
#define eif_type_nane ES2RT_t ype_nane
#define ei f_type_conforns_to ES2RT _type_cecil _conforns_to
/* __ */
/* Routine calls */
/* __ */
#define ei f_proc(r,t) ((BEl' F_PROC_PROXY) \

ES2RT_di sp_rdi spat ch((Bl F_CHARACTER *)(r), (t)))
#define ei f_bool ean_fn(r,t) ((BEI' F_BOOLEAN FN) \

ES2RT _di sp_rdi spat ch((Bl F_CHARACTER *)(r), (t)))
#define ei f_character_fn(r,t) ((BEI F_CHARACTER FN) \

ES2RT_di sp_r di spat ch((El F_CHARACTER *)(r), (t)))
#define eif_doubl e_fn(r,t) ((El F_DOUBLE_FN) \

ES2RT_di sp_rdi spat ch((Bl F_CHARACTER *)(r), (t)))
#define ei f_integer_fn(r,t) ((BEI'F_INTEGER FN) \

ES2RT _di sp_rdi spat ch((Bl F_CHARACTER *)(r), (t)))
#define ei f_objref _fn(r,t) ((ElF_GBIREF_FN) \

ES2RT_di sp_rdi spat ch((Bl F_CHARACTER *)(r), (t)))
#define eif_pointer_fn(r,t) ((ElF_PA NTER_FN) \

ES2RT_di sp_rdi spat ch((Bl F_CHARACTER *)(r), (t)))
#define ei f_proxy_fn(r,t) ((BEIF_PROXY_FN) \

ES2RT _di sp_rdi spat ch((Bl F_CHARACTER *)(r), (t)))
#define eif_real _fn(r,t) ((ElF_REAL_FN) \

ES2RT_di sp_rdi spat ch((Bl F_CHARACTER *)(r), (t)))
#define ei f_proc_call (fp) (*(ES2RT_di sp_proc_prep(fp)))
#define ei f_bool ean_cal | (fp) (*(ES2RT_di sp_bool ean_prep(fp)))
#define ei f_character_call (fp) (*(ES2RT_di sp_character_prep(fp)))
#define ei f_double_call (fp) (*(ES2RT_di sp_real _prep(fp)))
#define eif_integer_call (fp) (*(ES2RT_di sp_i nteger _prep(fp)))
#define eif_objref_call (fp) (*(ES2RT_di sp_obj ref _prep(fp)))
#define ei f_pointer_call (fp) (*(ES2RT_di sp_poi nter_prep(fp)))
#define ei f_proxy_call (fp) (*(ES2RT_di sp_proxy_prep(fp)))
#define eif _real _call(fp) (*(ES2RT _di sp_real _prep(fp)))
/* __ */
/* Attribute access and reattachnent */
/* __ */

#define ei f_bool ean field(o,f)
ES2RT_di sp_ddi spat ch (eif_access(0), (El F_CHARACTER *) (f))

#define eif_character_field(o,f)

*((El F_BOCLEAN *) \

*((El F_CHARACTER *) \

ES2RT_di sp_ddi spat ch (eif_access(0), (El F_CHARACTER *) (f))
#define ei f_double_field(o,f)
ES2RT_di sp_ddi spat ch (eif_access(0), (El F_CHARACTER *) (f))
#define eif_integer field(o,f)
ES2RT _di sp_ddi spat ch (eif_access(0), (El F_CHARACTER *) (f))
#define eif_objref_field(o,f)

*((El F_DOUBLE *) \
*((El F_I NTEGER *) \

*((El F_OBIREF *) \

Library descriptions 48

ES2RT_di sp_ddi spat ch (eif_access(0), (El F_CHARACTER *) (f))
#define eif_pointer_field(o,f) *((BEIF_PQ NTER *) \
ES2RT_di sp_ddi spatch (eif_access(0), (El F_CHARACTER *) (f))

#define eif_real field(o,f) *((BElF_REAL *) \

ES2RT_di sp_ddi spat ch (eif_access(0), (El F_CHARACTER *) (f))
/* __ */
/* Poi nter checks */
/* __ */
#define El F_VALI D p) (((EEF_PONTER (p)) != ((EIF_PONTER 0))
#def i ne El F_I NVALI I p) (((BEIF_PAONTER (p)) == ((EIF_PQNTER 0))

#endif /* CEAL */Index

Library descriptions

49

| NDEX
Symbols debug (debugger)
" (debugger) 28 disabling 29
.efiles7, 14 enabling 28
.es2 files 8 Debug (EiffelS 2.0 Preference Panel) 10
.essfile7, 14, 41 debug (rcl) 19
_ETexpanded_INTEGER 41 debug keys (rcl) 19
Debugging 21-30
A debugging
Access paths 7 enabling 21
al (rcl) 19 example session ?7?7-24
array (debugger) 28 object addresses 24
assertion monitoring 19-20 deep Current object (debugger) 28
from debugger 19, 28 deep object (debugger) 28
Auto-Inline 9 Don't Reuse Strings 9
B E
bit (debugger) 28 Eiffel Source-Level Debugging
break point (debugger) ‘See debugging
removing 26 EiffelS 2.0 Language preference panel 13,
Setting 26 18
showing 26 EiffelS 2.0 Language settings 10
Build Extras 7 EiffelS 2.0 preference panel 14
EiffelSfor UNIX 5
C emain.cfile17
C Enable bool Support 9
interfacing to 43-48 ensure (rcl) 19

C compilation 17
C/C++ Language settings 9
C/C++ Warnings settings 10
CECIL 4348
check (rcl) 19
classes

special 34
clusters clause 35
comments 31
compiling 14-17
Creating a project 5-6
Creation class 10
Creation routine 10
Current object (debugger) 27
custom keywords 12

D
dbase files 15

ES2 datafolder 12, 15, 16, 17, 18, 33
ES2 Data:Code folder 17

exit (debugger) 26

externa 43

F
File Mappings 7
Final (EiffelS 2.0 Preference Panel) 10

G
Generated group 17

H

help (debugger) 30
hide clause 35
history (debugger) 27

Library descriptions

50

I

identifiers 31
Initialization (Linker) 11
installing 4

invariant (rcl) 19

K
keywords 37

L
LDL 33
libraries
creating 18, 36
flat 35
removing 36
library
description files 31
dictionary files 31-36
library description file 12-13
library description language
SeeLDL
library dictionary file 12—13
licences 2
line count 15
Linker preference panel 11
linking 17
Litelicence 2
literal strings 31
loop_invariant (rcl) 19

M
Mac OS Toolbox Eiffel Library
Seedso MOTEL 2
MacOS main.cfile 17
Main 11
main.c file 17
memory 8
Minimum Heap Size 8
MOTEL 2,4
debugging and tracing 21
MWDebug 21

N
New Project 5

O

object (debugger) 28

open 33, 36

Optimize (EiffelS 2.0 Preference Panel) 10

P

pass115

pass 2 16

pass 3 16

pass 4 16

paths 31

Pool Strings 9
Preferred Heap Size 8
Prefix File 9

Processor Target settings 8
Project name 10
Project Settings 7-12

R

rcb file 19

rcl file19, 21, 28

Relaxed Pointer Type Rules 9
renaming 34

require (rcl) 19

run (debugger) 26

run to routine end (debugger) 26
run until (debugger) 26

S
single step (debugger) 26
SIOUX 22
line limitation 22
snap shot (debugger)
removing 27
setting 27
showing 27
source 33, 36
status (debugger) 30
string_cmd (debugger) 28
syntax errors 15

T
Target Settings 7

Termination (Linker) 11

trace lines (debugger) 29

trace lines off (debugger) 29

trace routine entry/exit (debugger) 29
trace routines off (debugger) 30
trouble shooting 39-42

U

use clause 15, 32, 34
Use Unsigned Chars 9
Y

variant (rcl) 19
VTCG(2) 41

W

where (debugger) 27

	Contents
	1. Welcome
	1.1. EiffelS for CW Licences
	1.2. Suggested Configuration

	2. Installing
	2.1. Installation Procedure
	2.2. Example Projects

	3. Creating your own CodeWarrior Eiffel Project
	3.1. Creating a project
	3.2. Checking Project Settings
	3.3. Setting up EiffelS Compiler Information Files

	4. Compiling Your Eiffel Project
	4.1. Compiling Eiffel Files
	4.2. Compiling C and Linking

	5. Creating your own CodeWarrior Eiffel libraries
	6. Assertion monitoring
	7. Eiffel Source-Level Debugging
	7.1. Enabling the debugger
	7.2. Example Debugger Session
	7.3. Some conventions
	7.4. Debugger Commands

	8. Description and Dictionary Files
	8.1. Conventions
	8.2. Library dictionaries
	8.3. Library descriptions

	9. Keyword Details
	10. Trouble Shooting
	11. Interfacing to C
	Index

