

Object Tools
http://www.object-tools.com

EiffelS

for Macintosh CodeWarrior

Installation and Usage

Guide

“Think Different ... Think Eiffel!”

VERSION: 1.0

1

CONTENTS

1. Welcome...2
1.1. EiffelS for CW Licences ...2

1.2. Suggested Configuration...3

2. Installing...4
2.1. Installation Procedure ...4

2.2. Example Projects ..4

3. Creating your own CodeWarrior Eiffel Project..5
3.1. Creating a project..5

3.2. Checking Project Settings ...7

3.3. Setting up EiffelS Compiler Information Files ...12

4. Compiling Your Eiffel Project..14
4.1. Compiling Eiffel Files...14

4.2. Compiling C and Linking ...17

5. Creating your own CodeWarrior Eiffel libraries18

6. Assertion monitoring..19

7. Eiffel Source-Level Debugging..21
7.1. Enabling the debugger ..21

7.2. Example Debugger Session ..23

7.3. Some conventions ...24

7.4. Debugger Commands..25

8. Description and Dictionary Files ...31
8.1. Conventions ..31

8.2. Library dictionaries...32

8.3. Library descriptions ..32

9. Keyword Details...37

10. Trouble Shooting..39

11. Interfacing to C ..43

Index ...49

2 Welcome

1. WELCOME

Welcome to Object-Tools EiffelS for CodeWarrior on Macintosh. Included
in this release are the EiffelS 2.0 compiler, the EiffelS CodeWarrior prefer-
ence panel, Eiffel Kernel libraries, the Mac OS Toolbox Eiffel Library
(MOTEL), and example projects. Follow these instructions to install these
files in the correct places, and then how to set up your own Eiffel projects.

1.1. EiffelS for CW Licences
If you have loaded this off a free CD or from the Internet you may use this
under the Lite licence. With this licence you can use EiffelS for CW on a
trial basis. You should not use the Lite form for extended periods, and may
not use it to release commercial software, or to deploy software for use of
others within your company. The Lite licence limits the size of systems that
you can compile, so once your application grows to a certain size, you will
get a syntax error and not be able to generate code. We want to make it as
easy as possible for you to use EiffelS, but in order to provide support and
better future releases, we are dependent on your support.

The commercial licence entitles you to full compilation facilities, and to
deploy and resell software created with EiffelS for CodeWarrior. Contact
Object-Tools at

i.joyner@acm.org (Ian Joyner Australia)

or

fm@object-tools.com (Frieder Monninger Europe)

gfrank@object-tools.com (Gudrun Frank US)

to obtain a full licence.

Also see the Object Tools Web site at:

Suggested Configuration 3

http://www.object-tools.com.

The full licence costs $US149. This licence includes the full compiler,
and the MOTEL library. This is for a single seat licence. For site licences
and University department licences, please contact Object-Tools. Full sup-
port is also not included with the Lite version, however, we will accept com-
ments and problems that you encounter, especially since you will probably
want any problems you have with your installation ironed out before you
pay for a full licence.

If you do not have Internet access, please send International Money
Order (personal cheques not accepted except in Australian dollars) to:

Object Tools
attn. Ian Joyner
14 Summerhaze Place
Hornsby Heights
Australia 2077
Phone +61 2 9477 3474

Object Tools
attn. Gudrun Frank
418 Parkview Way
Newtown, PA 18940
Phone 215-504 0854

Object Tools
attn. Frieder Monninger
Nordstr. 5
D 35619 Braunfels
Phone: 6472 911 030 Fax: 6472 911 031

Please enclose your name and address (email address) for us to return a full
licensed version.

1.2. Suggested Configuration
PowerPC Mac with at least 32MB memory. CodeWarrior Pro 2 (should
work on 1, might work on earlier).

4 Installing

2. INSTALLING

2.1. Installation Procedure
You will have downloaded two files, EiffelSCWCore.sit and EiffelSCWSup-
port.sit both files are required.

1. Copy the compiler (EiffelS) to your CodeWarrior Plugins:Com-
pilers folder.

2. Copy the EiffelS preference panel (EiffelS Panel) to your
CodeWarrior Plugins:Preference Panels folder.

3. Copy the EiffelS2 libraries folder to your MetroWerks:MetroW-
erks CodeWarrior folder.

4. Copy the Eiffel folder from the EiffelS2:(Project Stationary)
folder to your MetroWerks:MetroWerks CodeWarrior:(Project
Stationary) folder.

Your EiffelS installation is complete.

2.2. Example Projects
There are several example projects included in the release, HelloWorld, Sil-
lyBalls, and Mondrian. You should examine and compile these first, since
this is a good introduction working with EiffelS for CodeWarrior and to
programming with the MOTEL library. Note the first compiles will take a
long time because all libraries must be compiled for each project. Subse-
quent compiles are much faster.

Creating a project 5

3. CREATING YOUR OWN CODEWARRIOR
EIFFEL PROJECT

EiffelS for CodeWarrior has been developed from the UNIX version of
EiffelS to be as closely integrated with CodeWarrior as possible. To this
end, we have changed quite a bit from the UNIX version to do things in a
more Mac-like way and to make things more convenient for the program-
mer. Follow the instructions and guidelines in this section in order to set up
your Eiffel projects with as little fuss as possible.

Those familiar with creating projects with CodeWarrior will find creat-
ing an Eiffel project straightforward because there is very little difference.
Most of the information in this section can be skipped, but we include it for
completeness.

3.1. Creating a project
• Choose New Project from IDE File menu

Figure 1. New Project Panel

• Open the MacOS/Eiffel/ path and one of:

6 Creating your own CodeWarrior Eiffel Project

MacOS Toolbox PPC for a Toolbox project

Standard Console PPC for a text based console project.

Note: if the Eiffel section does not appear in the New Project
Panel, make sure you copy the Eiffel folder from the
EiffelS2:(Project Stationery) folder to the Metrowerks CodeWar-
rior:(Project Stationery) folder.

• Choose a project name. This name must match the project name
you will later enter in the EiffelS 2.0 Language panel, so this name
should not contain any special characters or blanks.

• Ensure the path is in the MetroWerks:MetroWerks CodeWarrior
folder and choose save. (The Eiffel project folder must be in here
because CodeWarrior makes this the starting directory for the com-
piler, so it is important for the compiler to be able to find things.)

You now have a default Eiffel project that looks as in figure 2.

Figure 2. Eiffel Project Panel

Checking Project Settings 7

3.2. Checking Project Settings
You should check the following are set up correctly, or tailor the settings as
desired.

• Choose <Project> Settings from Edit menu or click Settings but-
ton in project panel.

• Target Settings

Leave as is for chosen project or tailor as desired.

• Access paths

Leave as is for chosen project or tailor as desired.

• Build Extras

Leave as is for chosen project or tailor as desired.

• File Mappings

The following settings will be set in the File Mappings panel as
shown in figure 3.

Figure 3. File Mappings Preference Panel

.e files allow you to add Eiffel files to your project for conve-
nience. CodeWarrior does not pass these files directly passed to
the compiler. The EiffelS compiler searches for and processes all
.e files in the libraries and your project in a single execution.
This is the reason for the dummy file (.ess)—it fools CodeWar-
rior to start the Eiffel compiler; the compiler does not use this

8 Creating your own CodeWarrior Eiffel Project

file (hence it is completely arbitrary). The .e files do not need to
be added to your CodeWarrior project for the compiler to pro-
cess them.

The .es2 extension allows the library dictionary and library
description files to be added to your project.

Note that an Eiffel compiler must process all files in one exe-
cution because the definition of the Eiffel language requires
many cross module consistency checks. Most other languages
leave such checks to a linker that often gives obscure errors (if
the linker catches them at all, and if not you have to debug such
errors at run time). Hence an Eiffel compiler will take longer
compiling than other compilers, but the thorough checking will
save much more debugging time and frustration. EiffelS also
keeps much information from its first and second passes in data-
base files, so once the files are compiled the first time, subse-
quent compiles are a lot faster. The third pass generates the C
files, and these are regenerated only when the source file has
been changed, so once Pass 3 is completed, subsequent compiles
are again much faster.

This also removes the need to create module header files sep-
arately, and to specify module dependencies (via make, etc.)

• <Processor> Target

These settings are shown in figure 4. In the File Name put what-
ever file name you want.

The Preferred and Minimum Heap Size should be set to at
least 684K. This is because Eiffel performs automatic memory
management for you, and it reserves 512K memory blocks for its
objects. Thus the smallest block must be at least 512K plus a lit-
tle extra. The Eiffel runtime will automatically allocate extra
512K blocks as needed if the space required for active objects
increases beyond 512K. You should increase your memory sizes
for your application appropriately if this happens.

Checking Project Settings 9
Figure 4. PPC Target Preference Panel

• C/C++ Language

These settings are shown in figure 5. Everything in this panel
should be disabled, except Relaxed Pointer Type Rules, Use
Unsigned Chars, and Enable bool Support - these must be
checked. Prefix File must be blank. Auto-Inline, Pool Strings,
and Don’t Reuse Strings may be set optionally, but will effect
your memory requirements.

Figure 5. C++ Language Preference Panel

Checking Project Settings 10
• C/C++ Warnings

These are all reset—don’t worry Eiffel has done many more
checks to ensure your code is correct than C/C++ will ever do.
This is shown in figure 6.

Figure 6. C++ Warnings Preference Panel

• EiffelS 2.0 Language

Enter the Project name. This must match the folder name where
you saved the project when you created the project. The name
must not contain special characters or blanks.

Enter the Creation class and routine of your Eiffel system.
This will be the name of the class that is first executed, and the
routine that the runtime executes. The format for this is
<class>.<routine>, for example, HELLO.make,
MY_APPLICATION.get_going, etc.

Enter PROJECT in the Debug: text box. Enter the names of
the Eiffel libraries you will be using in either the Debug, Opti-
mize, or Final box. These boxes enable different levels of runt-
ime checking. Debug, for example, enables all assertions in
preconditions, postconditions, etc., and enables the Eiffel source
language debugger.

Optimize enables only preconditions and postconditions.
Final disables all assertions. The names of the libraries match
the names given in your projects Library dictionary.es2 file (see

11 Creating your own CodeWarrior Eiffel Project
later). These names will normally match the library folders in the
EiffelS2:Library folder, for example ELKS, EXKERNEL, RUNT-
IME, CONTAINER, MOTEL. You can also develop your own
libraries that other projects will use. The EiffelS preference
panel is shown in figure 7.

Figure 7. EiffelS Preference Panel

• <target> Linker

The linker panel for your target has Main set to execute main.
Ensure Initialization and Termination are blank. The linker
preference panel is shown in figure 8.

Setting up EiffelS Compiler Information Files 12
Figure 8. PPC Linker Preference Panel

• Custom Keywords

These are setup in the project stationery—if you don’t like the
defaults, you can change them. You can even change them in the
default project in the (Project Stationery) folder.

3.3. Setting up EiffelS Compiler Information Files
• In this step you will set up two files particular to your project, the

Library dictionary.es2 and the Library description.es2 files. There
is one dictionary file for each project and one description file for
each project and each library; libraries do not have a dictionary file.

• The Library dictionary.es2 and the Library description.es2 files go
in your project folder. The compiler will automatically create .pub
and .bin files to go in the ES2 data folder.

You may throw out the .pub and .bin files—the compiler will
regenerate them.

• The Library dictionary.es2 file.

This file contains the path information about where the libraries
are. These will normally be in the EiffelS2 folder, and are path
relative to your MetroWerks CodeWarrior folder (or whatever

13 Creating your own CodeWarrior Eiffel Project
folder is the default folder for CodeWarrior.) The Library dictio-
nary.es2 file looks like:

-- Standard library dictionary
HELLO "HELLO"
ELKS "EIFFELS2:library:elks"
RUNTIME "EIFFELS2:library:runtime"
EXTENDED_KERNEL "EIFFELS2:library:exkernel"
CONTAINER "EIFFELS2:library:container"
MOTEL "EIFFELS2:library:MOTEL"

Note the library names match the names you put in the EiffelS
2.0 Language preference panel. The first entry is your own
project, so this will match the project name in the panel, and the
folder name for the project.

You can also use different versions of the libraries by using
different paths in the Library dictionary.es2 file. (See section 8
for a full description of the Library dictionary.es2 file.)

• The Library description.es2 file.

This file contains project information about the libraries that this
project uses. For your project, the special library name
PROJECT is used. The other library names given in the use
clause must match the libraries given in your projects Library
dictionary.es2 file.

-- Library description for the
-- project library
open source library PROJECT
use ELKS, MOTEL
clusters ""
end -- library PROJECT

Each library also has its own Library description.es2 file.
They will be supplied with the library, so you need worry no
more about them. (See section 8 for a full description of the
Library description.es2 file.)

Compiling Eiffel Files 14
4. COMPILING YOUR EIFFEL PROJECT

(IMPORTANT NOTE: There is a problem with CW Pro 2/3 that causes the
compiler to not be reinitialized between runs. This means you will get an
error if you run the compiler a second time. All you need to do is force
CodeWarrior to unload the compiler by switching out of CodeWarrior to
another application: clicking on the desktop for instance. The workaround is
simple, but in our opinion annoying—sorry about that. MetroWerks have
accepted this as a bug, and it will probably be fixed in CW Pro 4.)

Figure 9. Compiler unloading error

(Another important note: .e files must not be open in the IDE when
EiffelS is compiling. This is also an annoying environmental factor that we
will attempt to fix in a future release. Make sure .e files are closed when
compiling, and that they are also not open in the CW Errors & Warnings
window.)

4.1. Compiling Eiffel Files
• Select the .ess file in the project window;

• Chose compile from the project menu (Cmd-K). Compiling the .ess
file will cause the compiler to be invoked, and it will automatically
compile .e files that need recompiling, based on updated files and
the dependencies between classes;

• The EiffelS compiler now reads the preferences from the EiffelS
preference panel;

15 Compiling Your Eiffel Project
• If the compiler cannot create the Project description.es2 file in the
ES2 data folder, you will get the error:

Error: Can't create Project description.es2

in the CW IDE error window.

The compiler then compiles your Library dictionary.es2, Library descrip-
tion.es2 files and Library description.es2 files from the libraries you have
listed in the use clause. If any problems are found in these files, they are
reported as syntax errors in the IDE errors window.

The compiler reports progress in the IDE build window. The compiler
works in four passes. The first pass checks the source files in your project
and libraries to see if they or any files they have dependencies on have been
updated since the information stored in the dbase files. If so the second
phase of the first pass compiles these files.

The name of each file as it is being checked and compiled appears in the
IDE build window:

Figure 10. First pass

As each file is compiled the line count is updated in the IDE build win-
dow. Unfortunately, the total line count remains at 0 because the IDE
updates this only after a compile is complete. The line count is updated only
at the end of each file, so don’t expect to see the line count going up rapidly
on large files.

Since Pass 1 checks and then compiles files, you will see twice the name
of the files that are recompiled (if you can read that fast)

Syntax errors in pass 1 are linked to the source file, so double clicking
on the error will open the source file. Unfortunately, in subsequent passes,
the original file is not used, so only the library name, class name, line, and
column are reported, but this is enough information to pin point each error.

Important: Since EiffelS opens the source files directly, and not through
the IDE, unfortunately all .e files must be closed when compiling with
EiffelS. If a file is open in the error window, the error window must also be
closed in order to save the file (this seems to be a bug in CW Pro 2). If a .e

Compiling Eiffel Files 16
file is open when it is compiled, an obscure error is reported on the first line
of the file.

Pass 2 checks some consistency information in each class. You will see
the class names as they are compiled:

Pass 2: MY_APPLICATION

Pass 3 does more consistency checking but also generates the C code.
When regenerating C files, this is the longest pass. Progress information is
the same as in Pass 2:

Figure 11. Third pass

Pass 4 is a clean-up pass, and results in no errors. Again it reports
progress on each class:

Figure 12. Fourth pass

Pass 4 is very fast. You should check that the compiler reaches pass 4
since, very occasionally, a database error causes the compiler to silently
give up in pass 2 or 3. In this case you should remove the ES2 data folder as
described in the section 10. If the compiler should crash, an error file,
Eiffel2.err will usually be placed in the MetroWerks CodeWarrior folder.

The first EiffelS compile will take a long time because it must process
all the sources and generate all the C files. However, subsequent compiles
do not do this so each compile is done in an acceptable amount of time, pro-
portional to the number of changes you have made.

17 Compiling Your Eiffel Project
4.2. Compiling C and Linking
Unfortunately, CW IDE does not provide facilities to add files to a project
programmatically, or to schedule the .c files for automatic compilation. In
your Eiffel project there is a Generated group that will originally be empty.

Now add all the files that the EiffelS compiler generated in the ES2
Data:Code folder in your project folder. These files are named c0.c, c1.c ...
cn.c, and contain all the C files for all classes compiled from your own
project, as well as the libraries you use. Adding all the files from this direc-
tory also adds several .h files that are used for your Eiffel compilation
options. These files mean that the compiler does not have to regenerate any
.c files if you change the libraries from debug to optimize to final, etc.

The EiffelS compiler has also generated the main.c and emain.c files. If
you are building a very simple program that does only console I/O, also
keep the main.c file in the project. If you are building a toolbox application
using the MacOS library, then remove main.c from the project, since the file
MacOS_main.c from the EiffelS2:Library:MOTEL folder contains the main
function. If neither of these do what you want, you can provide your own
main, and add it to the sources group. Do not store your own main in the
Code folder because the compiler will overwrite it.

Now all you need to do is run the C compiler and linker.

Subsequent Eiffel compiles flag to the IDE that C files have changed, so
you should observe the changed red check come up against a C file because
the EiffelS compiler regenerates it. However, the IDE is not 100% accurate
at picking up these files, so it is best to just compile with EiffelS first, and
then build later (at least with CW Pro 2).

Also if you add classes (and therefore .e files) to your Eiffel system, new
.c files will appear. You will also need to add these to your Generated group.

Note that the EiffelS compiler always overwrites the correct .c file if the
source has changed. This information is kept in the dbase files. Thus if for
any reason you lose or throw out the code files, make sure you also discard
the admin and dbase folders which are all in the ES2 data folder.

Compiling C and Linking 18
5. CREATING YOUR OWN CODEWARRIOR
EIFFEL LIBRARIES

Read the section Creating a Library in section 8. To accomplish the steps
described there, you should set up your own IDE project for the library. No
special settings need be given, this project will never be compiled, and is
only a convenient repository for your Eiffel files. Create a real project as
described above, and include your library name in your project’s Library
dictionary.es2 file, and EiffelS 2.0 Language preference panel. You can
then manipulate the library files using the library project.

The library does not have a dictionary file, but it does have a description
file that tells the compiler which other libraries the library uses. You should
also add the library into the uses clause in your project’s description file.

If you strike any problems remove the ES2 data folder from the library
folder.

19 Assertion monitoring
6. ASSERTION MONITORING

You can enable/disable assertion checks on a per library basis. To accom-
plish this you create a file rcl in the directory where the main project files
are. The compiler processes this file and creates an rcb file that the runtime
uses to determine the assertion settings. The syntax for the rcl file is:

require library_name.class_name
ensure library_name.class_name
check library_name.class_name
loop_invariant library_name.class_name
variant library_name.class_name
invariant library_name.class_name
debug [(key_list)] library_name.class_name

Comments are indicated by the standard Eiffel --.

All clauses are optional. library_name is either the name of a library or
the reserved keyword all (meaning all libraries used in the program).
class_name can also be either the name of a class or the keyword all. The
order of the clauses is irrelevant and each can be repeated as often as
desired.

debug has an optional list of keys that are strings (see Eiffel: The Lan-
guage for a detailed description of debug keys). For example:

debug ("TEST", "ANOTHER_TEST") KERNEL

enables the debug instructions labeled with the keys TEST or
ANOTHER_TEST in all classes of the library KERNEL.

Note:

By default all assertion checks are off. Assertion monitoring can also be
enabled and disabled in the EiffelS source level debugger.

Compiling C and Linking 20
An example rcl file is:

require PROJECT.all
ensure PROJECT.all
invariant PROJECT.all
--debug MOTEL.all
--debug ("events") MOTEL.all
--debug ("event_disk") MOTEL.all
--debug ("event_idle") MOTEL.all
--debug ("event_disk") MOTEL.all
--debug ("event_setup_menu") MOTEL.all
--debug ("event_menu_command") MOTEL.all
--debug ("event_key_down") MOTEL.all
--debug ("event_high_level") MOTEL.all
--debug ("event_key_up") MOTEL.all
--debug ("event_mouse_down") MOTEL.all
--debug ("event_mouse_up") MOTEL.all
--debug ("event_null") MOTEL.all
--debug ("event_OS") MOTEL.all
--debug ("event_activate") MOTEL.all
--debug ("event_update") MOTEL.all
--debug ("event_window") MOTEL.all

Notice that MOTEL gives many trace options that can be enabled by remov-
ing the comment characters --. Because of this level of tracing, MOTEL
helps you find out exactly what is going on in your application, as well as
helping you understand how MOTEL works.

21 Eiffel Source-Level Debugging
7. EIFFEL SOURCE-LEVEL DEBUGGING

You can use the CodeWarrior debugger, MWDebug. However, even if you
understand the EiffelS runtime, this proves very tedious. For this reason, a
source-level debugger is provided with EiffelS. Note that while the CW
debugger has a very nice interface, the EiffelS debugger is very text ori-
ented, and does not provide a pretty interface. Hopefully, this is made up for
by the power of the debugger, which has some advanced features not found
in any other environment.

In summary, the MW debugger will really help only to debug the EiffelS
runtime environment, which you should never need to do, whereas the
EiffelS debugger helps debug your applications at the Eiffel level. There is a
third even higher level of debugging provided in the MOTEL library, which
is enabled using the debug keys in the MOTEL library that are enabled in the
rcl file as previously explained. This level can tell you exactly what has hap-
pened in the MOTEL library, which events have happened, and any other
important items at the MOTEL level.

7.1. Enabling the debugger
As shown in section 13 to enable the debugger, make sure that one or more
libraries are listed in the debug text box on the EiffelS preference panel.
Recompile with Eiffel with the .ess file as the source.

Enabling the debugger 22
Figure 13. Enabling the debugger

Enabling debug changes the debug option in the <project>.h file. When
debug is set, the flag in the .h file should be:

#define EDEBUG_2 1

(You do not have to set this, but if you have problems, check that the .h file
has been regenerated with this define.)

Then recompile with C.

You should ensure that CodeWarrior recompiles all the .c files for the
library you are debugging so that the option is picked up.

 When you run your application, the debugger is automatically started in
a CodeWarrior SIOUX window, when the first routine in the library being
debugged is called. You will be prompted to run, step, enable breakpoints,
etc.

(NOTE: SIOUX has a current limitation of 32K in the window, after
which it dies. There is a new library announced that will enable standard
output windows of greater than 32K. For this reason, more voluminous out-
puts are sent to a trace file that is placed in the same directory as the applica-
tion.)

23 Eiffel Source-Level Debugging
7.2. Example Debugger Session
The following figures show a debugger session, which illustrates the points
talked about in the following discussion.

Figure 14. Example debug session

Prompt

Object Address Current location

Default
command

Input

Input
command

Set a breakpoint

Currently set breakpoints

Remove a breakpoint

Run to next breakpoint

Output from MOTEL in response to mousedown chosing ‘New’

Prompt

Prompt

Prompt
Prompt

Prompt

Some conventions 24
Figure 15. Debugger output

7.3. Some conventions
Object addresses are output in square brackets, for example: [2acee74]. You
can copy and paste this address into other commands to find out further
information about the object at this location. Command and other defaults

Stopped

breakpoint

do_new Stack
History

do_new
locals

Current object

Dump specific
object
(from MOTEL)

Line numbers

Class

Object address

Field

Types

Values

names

25 Eiffel Source-Level Debugging
are also presented in square brackets. If the default is acceptable, just press
return—that is the input. For example

[2acee74] PROJECT:MONDRIAN.make @56 [s]:

is presented as the prompt at the current execution location. Here the first
address [2acee74] is the address of the Current object. [s] at the end of the
prompt indicates that single step is the default command; if you press enter,
another single step will be taken. The debugger also outputs other defaults
in square brackets to save you much typing.

Line numbers are indicated by the @ character.

The rest of the command prompt indicates the project, class, feature and
line number in the file where the debugger has halted program execution.
The line number corresponds to the file line number in the CodeWarrior
IDE editor. The CW IDE indicates this line in the panel at the bottom left of
editor windows. You can position an IDE window at this line by clicking
this line number panel and entering the number directly. Thus it is easy to
relate what the debugger tells you to your Eiffel source.

7.4. Debugger Commands
The debugger prints out the following list when you input an unknown com-
mand or ?.

r - run
x - exit
u - run until
s - single step (into sub-routines)
t - single step (over sub-routines)
t/ - run to routine end
+bp - set break point
-bp - remove break point
bp - show break points
+ss - set snap shot
-ss - remove snap shot
ss - show snap shots
h - history
w - where
c - Current object
c/ - deep Current object
o - object
o/ - deep object
a - array
b - bit
" - string_cmd -- "
am - assertion monitoring

Debugger Commands 26
+d - enable debug
-d - disable debug
+tl - trace lines
+tr - trace routine entry/exit
-tl - trace lines off
-tr - trace routines off
y - status
? - help

 r - run

Runs the application up to the next encountered breakpoint, or until the
application terminates.

x - exit

Terminates the application.

u - run until

This prompts you for a location in the same format as a breakpoint. The
application runs until that location is reached. The breakpoint is removed
once it is encountered. (u sets a temporary breakpoint.)

s - single step (into sub-routines)

This single steps the application. Routines are entered as they are encoun-
tered.

t - single step (over sub-routines)

This is a single step command as for s, except that encountered routines are
not entered.

t/ - run to routine end

This runs the routine until the end, where the debugger stops for further
instructions. You can at this point use the history command to find the effect
on local variables (arguments cannot be changed in Eiffel), or the c com-
mand to examine the state of the Current object.

+bp - set break point

This command prompts you for the library, class, feature and line of the
breakpoint to set. The default library, class, and feature are the current
library, class, and feature.

-bp - remove break point

This command lists the current breakpoints—you can remove a breakpoint
by the number.

bp - show break points

27 Eiffel Source-Level Debugging
This shows the currently set breakpoints.

For example, removing and then showing the remaining breakpoints:

[3034e84] PROJECT:MONDRIAN.make @0 [+bp]: -bp
1) MOTEL:MOUSE_DOWN_HANDLER.process @86
2) MOTEL:RECTANGLE.paint @91
3) PROJECT:MONDRIAN.make @73
Number? 2

Breakpoint at MOTEL:RECTANGLE.paint @91 removed
[3034e84] PROJECT:MONDRIAN.make @0 [-bp]: bp
1) MOTEL:MOUSE_DOWN_HANDLER.process @86
2) PROJECT:MONDRIAN.make @73

+ss - set snap shot

Snap shot is a little like a breakpoint, except that when the location is
reached, a snap shot of the object executing at that location is taken. The
debugger does not stop as with a breakpoint. The snapshot taken is a deep
snapshot; that is, all objects that are connected transitively to the current
object are also output. Since you can dump an entire system this way, this
snapshot is output to the trace file.

-ss - remove snap shot

This command lists the current snapshots—you can remove a snapshot by
the number.

ss - show snap shots

This shows the currently set snapshots.

h - history

This outputs the stack call chain history and outputs the arguments and
locals for the routine currently executing.

w - where

This prints out the current location in the application. As this information is
output in the command prompt, it is mainly redundant.

c - Current object

This outputs the Current object:

[3034e84] PROJECT:MONDRIAN.make @73 [r]: c

Current: MONDRIAN [3034e84]
 done: BOOLEAN is false
 mondrian_menus: MENU_LIST [3034ec4]
 mondrian_view: MONDRIAN_PICTURE [30456cc]
 test_string: STRING [303570c] is "A test string"
 window_count: INTEGER is 0
end

Debugger Commands 28
[3034e84] PROJECT:MONDRIAN.make @73 [c]: s

c/ - deep Current object

This outputs the Current object and all subordinate objects.

o - object

o allows you to monitor any arbitrary object given an object reference
address.

o/ - deep object

This is the same as o, except all connected objects starting from the given
address are output.

a - array

a outputs an array.

b - bit

b outputs a type of BIT N

" - string_cmd

" outputs a STRING object at a given address. This should be redundant
since all string values are included in other outputs.

am - assertion monitoring

am enables you to set and reset assertion monitoring at run time overriding
the settings in the rcl file.

[3122e44] PROJECT:MONDRIAN.make @0 []: am
Library [PROJECT]?
Class [MONDRIAN]?
Preconditions? +
Postconditions? +
Checks?
Loop invariants?
Loop variants? -
Class invariants? +
Debugs?
[3122e44] PROJECT:MONDRIAN.make @0 [am]:

This example sets precondition, postcondition and class invariant monitor-
ing on the default library and class, PROJECT:MONDRIAN. It resets loop
variant monitoring and leaves checks and loop variants on their current set-
tings.

+d - enable debug

+d allows you to enable debug instructions at run time. For example the
MOTEL class HANDLER_LIST has the routine event_setup_menus:

29 Eiffel Source-Level Debugging
setup_menus is
local

it: ITERATOR
do

-- First setup the menus.

debug ("events", "event_setup_menus")
stamp_time (true)
io.put_string (": Setup Menus%N")

end

from
it := l.iterator

until
it.finished

loop
l.item (it).setup_common_menus
it.forth

end
end

Notice the debug instruction: this contains instructions that will
be executed when any of the debug keys are set. This debug
instruction has two keys: events and event_setup_menus. The
events key enables many such debug instructions, whereas the
event_setup_menus is more specific to this debug instruction.

In the debugger, we set the event_setup_menus key as follows:

[2c6f0c4] PROJECT:MONDRIAN.make @0 []: +d
Library [PROJECT]? MOTEL
Class [MONDRIAN]? HANDLER_LIST
Key? event_setup_menus

-d - disable debug

-d allows you to disable debug instructions at run time.

+tl - trace lines

+tl writes a trace for every line executed to the trace file. It can produce very
voluminous output but will save you much single stepping.

+tr - trace routine entry/exit

+tr writes a trace for every routine entry and exit to the trace file. It is less
voluminous than +tl. +tl and +tr used with snapshot provide a very powerful
tracing facility.

-tl - trace lines off

Debugger Commands 30
This ceases output of the line trace to the trace file.

-tr - trace routines off

This ceases output of the routine trace to the trace file.

y - status

Will give some status information (no information available as yet).

? - help

Output the command list.

31 Description and Dictionary Files
8. DESCRIPTION AND DICTIONARY FILES

The following sections provide a full description of the Library dictio-
nary.es2 and Library description.es2 files should you require the more
advanced forms available in these. You will most likely not need this infor-
mation until you create very large Eiffel projects.

8.1. Conventions
Identifiers

Identifiers must begin with a letter and must be composed of letters, digits
and the underscore character only.

Literal strings

Literal strings follow the Eiffel conventions. They must be enclosed in dou-
ble quotes and Eiffel escape sequences (e.g. %N for the newline character)
can be used. Except in Eiffel source files, literal strings may not extend over
several lines.

Comments

Comments follow the Eiffel convention. They begin with a double dash (--)
and extend to the end of the line.

Eiffel source files

An Eiffel source file must have the file extension .e. The name of the file is
otherwise arbitrary. The file name does not have to match the class name,
but it is best if it does. The compiler will automatically find out which class
is stored in the file.

An Eiffel source file must contain exactly one class text.

Paths

Paths must be specified using the MacOS convention (i.e., : as component
separator). Paths are always given as literal strings.

Source files vs. binary files

The library dictionary and library description source files (explained in the
next sections) may be removed as soon as the compiler has translated them

Library dictionaries 32
(a .bin file of the same name has been produced). For example, if you don’t
want someone modifying the library description of library L, you can
remove the Library description.es2 file from the folder of the library after it
has been compiled.

8.2. Library dictionaries
Every Eiffel/S library has a name (an identifier) and its own directory (with
a number of subdirectories). The purpose of a library dictionary is to map
library names to paths. There is a single library dictionary that you will find
in EiffelS2:LIB_DICT:Library dictionary.es2 Here is a complete example:

-- Standard library dictionary
HELLO "HELLO"
ELKS "EIFFELS2:library:elks"
RUNTIME "EIFFELS2:library:runtime"
EXTENDED_KERNEL "EIFFELS2:library:exkernel"
CONTAINER "EIFFELS2:library:container"
MOTEL "EIFFELS2:library:MOTEL"

This file tells the compiler that, e.g., library CONTAINER can be found in
the directory EIFFELS2:library:container. Where ever you need the ser-
vices offered by this library you can request them by simply writing

use CONTAINER

you don’t have to remember where this library can be found. Each project
has its own dictionary file that enables you to use different versions of
libraries for different projects.

The name of a library dictionary file must be Library dictionary.es2.

8.3. Library descriptions
Eiffel/S 2.0 offers a structuring mechanism called libraries. A library con-
sists of a set of related classes and is treated by the compiler as an entity in
its own right, just as classes. Typical examples of libraries are a container
library or MOTEL.

The main advantage of libraries is that the user does not need to remem-
ber how the library is built, which source files belong to it, where they can
be found. All this information is stored in a library description written by
the creator(s) of the library. If you want to use library L just say use L.

33 Description and Dictionary Files
Every library has its own directory that contains a number of subdirecto-
ries. Two of them are important for the user: the subdirectory ES2 data and
the subdirectory eiffel source. The first contains the library description file
Library description.es2 and the second contains the source code (possibly
in further sub-directories). The compiler maintains a library database that is
stored in the subdirectory dbase.

Library descriptions are written in the simple library description lan-
guage (LDL). Instead of giving the formal syntax we explain the clauses
step by step. The overall structure is:

header clause
[use clause]
[clusters clause]
[hide clause]
end

Header Clause

First of all, a library has to have a name. Thus a library description starts
with

[open] [source] library name

where name is an identifier - the name of the library. The optional clauses
open and source have the following meaning:

If a library is declared as being open then the EiffelS compiler is
allowed to modify the library database. Typically only libraries that are not
finished yet are declared as being open. But there are situations in which
even a finished library has to be declared as open: suppose L1 is finished, L2
is not and some class C1 in L1 inherits from some class C2 of L2. If C2 is
modified in a way that would require to modify some database entries for
C1 in L1 then this would fail if L1 was not open.

The optional source clause simply indicates whether source code for the
library is available or not. For a library that is not open, the clause is mean-
ingless to the compiler. However, if the library is open and source is speci-
fied, the compiler will automatically check the source code against the
database. If some class C has entries in the database but its source file does
no longer exist, all entries for C will be deleted in the database.

The use of open and source is explained in the following table:

open source use if
yes yes source code is available and may need to be modified

yes no no source code available but database may need to be

updated

Library descriptions 34
no no no modifications necessary or desired

no yes don’t use it (same meaning as no/no).

Use Clause

The next clause is the use clause. Although it’s optional, it is needed in most
cases. It lists all libraries that are used by the current library. To be more
precise: a library L1 uses a library L2 iff L1 is different from L2 and some
class C1 of L1 is a client or a descendant of some class C2 of L2. If L1 uses
L2 then the library description of L1 must include a clause

use L2

If it uses several libraries L1, ..., Ln then the clause becomes

use L1, L2, ..., Ln

It is not allowed to mention the same library twice in a use clause. The use
clause can be combined with renaming as follows:

use
L1

rename
A as B,
C as D

end,
L2,
L3

rename
U as V

end

A use clause with renaming of the form use L rename A as B end has the
following meaning: Library L contains a class named A. The current library
(i.e. the one in which the use clause appears) wants to use this class but
under a different name: B. Thus if some class in the current library refers to
B it actually refers to A. This mechanism is necessary if two different librar-
ies offer (export) a class under the same name and are both used by a third
library. The rules that govern renaming here are the same as those for
renaming Eiffel features. However, some classes cannot be renamed
because the compiler makes strong assumptions about them. These are:

GENERAL, ANY, COMPARABLE, NUMERIC, HASH-
ABLE, ARRAY, STRING, BOOLEAN, INTEGER, REAL,
DOUBLE, CHARACTER, POINTER, BOOLEAN_REF,
INTEGER_REF, REAL_REF, DOUBLE_REF,
CHARACTER_REF, POINTER_REF, BIT, NONE.

35 Description and Dictionary Files
Clusters Clause

As we mentioned in the introduction, the source code for a library is stored
in the subdirectory eiffel source of the library directory and in subdirectories
thereof. The clusters clause tells the compiler in which subdirectories of
eiffel source it shall look for Eiffel source files. The clause

clusters "", "c1", "c2:c3"

instructs the compiler to look for Eiffel source code in the subdirectories

'eiffel source', 'eiffel source:c1' and 'eiffel source:c2:c3'

[Recall that the compiler assumes that Eiffel source files have the file exten-
sion .e].

If the clusters clause is omitted, the compiler expects all Eiffel sources
of the library in eiffel source.

Hide Clause

Sometimes it is necessary to introduce some utility classes in a library that
are for implementation purposes only, and should be visible only to the
library itself. One may or may not wish to make these classes visible to
other libraries. If not, one can simply hide them by writing

hide C1, C2, etc.

Classes declared as hidden are useable only within their enclosing library.
This clause is optional. Note that those classes that cannot be renamed (see
above) can also not be hidden.

Flat libraries

If you find it inconvenient that the library description file and the Eiffel
sources must be placed in subdirectories of the library directory, you can
flatten the library as follows:

Create a file with name flat in the library directory. Place Library
description.es2 in the library directory. The clusters clause will now be
interpreted as being relative to the library directory itself instead of relative
to the subdirectory eiffel source.

Note that the compiler is not interested in the content of the file flat—it
merely looks whether such a file exists or not.

Creating a library

Library descriptions 36
In order to create a library you have to do the following:

a choose and create a directory for the library.

b create a library description file Library description.es2. Use the
keywords open and source in the description.

c Copy the source code of the library to eiffel source folder or appro-
priate subfolders thereof.

d Enter the name and path of the library in a library dictionary (see:
library dictionaries).

e Create a simple project that uses the library (it suffices to mention
the library name in the use clause of the project description).

f Compile the project.

[adapting c) and d) to flat libraries is straightforward].

As soon as a library has passed pass 1 of the compiler, the source code is
no longer necessary in order to use the library. You could then remove the
keyword source from the library description and remove the source code (of
course only if you don’t want to modify it in the future).

Removing a library

In order to make a library inaccessible, simply remove its name and path
from any library dictionary that contains it. Then you can safely remove the
whole library directory (of course you will normally save the source code
and the library description file first).

37 Keyword Details
9. KEYWORD DETAILS

We have divided the Eiffel keywords into four categories that you will find
in the files Primary keywords, Secondary keywords, Warning keywords and
Basic types.

Primary keywords

These are the main keywords in Eiffel. We suggest attaching to the Custom
keyword set 1 with the colour blue.

class, create, creation, do, else, elseif, end, expanded,
export, feature, from, frozen, if, indexing, infix, inherit,
inspect, is, like, local, loop, precursor, prefix, redefine,
rename, select, strip, then, undefine, until, variant, when

Secondary keywords

These are the secondary keywords in Eiffel. We suggest attaching to the
Custom keyword set 2 with the colour green.

alias, all, and, as, Current, false, implies, not, old, Result,
or, true, unique, Void, xor

Warning keywords

These are the other keywords of Eiffel. They could be included with the pri-
mary keywords, but a different colour will help flag a different to the usual
situation. The design by contract keywords (assertions, invariants and
exception handling, therefore with words that can be affected in the RCL
file) keywords have also been included in this set. We suggest attaching to
the Custom keyword set 3 with the colour brown.

check, debug, deferred, ensure, external, invariant, obso-
lete, once, require, rescue, retry, separate

Library descriptions 38
Basic types

These keywords identify basic types. We suggest attaching to the Custom
keyword set 4 with the colour purple.

BIT, BOOLEAN, CHARACTER, DOUBLE, INTEGER,
NONE, POINTER, REAL, STRING, TUPLE

39 Trouble Shooting
10. TROUBLE SHOOTING

Error: Can't create Project description.es2

Ensure your project folder is in the MetroWerks:MetroWerks
CodeWarrior folder. Make sure the project name in the EiffelS 2.0
Language panel is the same as your project folder.

Error: Can't create Project description.es2. Ensure Project name in EiffelS2
Panel matches the folder name.

Ensure the EiffelS2 folder is in the MetroWerks:MetroWerks
CodeWarrior folder and that the name is the same as in the EiffelS
panel project entry. The project name and the folder name must not
contain blanks or special characters.

Error: Dictionary file Library dictionary.es2 doesn't exist or you don't have
read permission. Project desription.es2 line 1 project <PROJECT>

Make sure that the Library dictionary.es2 file is present in the
project folder.

Error: The binary file "<DRIVE>:metrowerks:metrowerks codewarrior:ES2
data:Library desctription.bin" doesn't exist.

Make sure that the Library description.es2 is present in the project
folder or Library description.bin file is present in the ES2 data
folder. You do not need a Library description.es2 file if you have the
Library description.bin file. In this case a library is closed.

Error: The library "PROJECT" cannot be used because it has not success-
fully passed ECC (pass 1).

Make sure all the .e files for your project are in the Eiffel source
folder in your project folder.

Error : Lexical error: Unknown symbol " "
Library dictionary.es2 line 1 -- Standard library dictionary

Library descriptions 40
Make sure that the Library dictionary.es2 is not open, either in
CodeWarrior or any other application.

The compiler mysteriously stops during Pass 2 or 3.

Find the file eiffel2.err and open it. This will give clues as to why the
compiler failed (for example I/O error). (Yes a stack dump on the
Mac, not system error or core!)

Try recompiling. If the compiler keeps failing:

Sometimes the generated compiler files get corrupted. Remove the
ES2 data folder from your project folder. If you are developing a
library as well, remove the ES2 data folder from the library folder.
Recompile: this will cause the regeneration of all files.

Error: Keyword "class" expected reported on line 1 of a .e file

Ensure file is closed and also that it is not open in the IDE Error
window.

Error: Compiler reports undefined item, but there is no item like it near the
line in the reported class.

This is probably an error in an inherited invariant, precondition or
postcondition. Search all ancestors of the class, and check the
reported error line in those classes. You will probably find an item
with the name at one of those lines. This will probably indicate a
problem with inheritance, and you will have to rename/redefine the
feature causing the clash.

Compiler reports strange error on first line of a .e file.

Ensure .e file is not open in CW IDE. Ensure the file is also not open
in the IDE Error window.

Compiler quickly reports "Error: Due to CW 2 problem, please click on
desktop..." as a syntax error.

This is a problem that CW does not unload the compiler after a com-
pile. It is easy to force CW to do this: either click on the desktop to
force CW to swap, or do a C compile or link. Object-Tools is work-
ing with MetroWerks to get a permanent fix to this problem.

After a seemingly successful compile (compiler has progressed through to
Pass 4), compiler reports: "Error: Due to CW Pro 2 problem, please click on
desktop..."

41 Trouble Shooting
In the "File Mappings" preference panel, make sure you have set up
a .ess file. There should be only one .ess file added to your project—
its contents does not matter, it is simply used to get CodeWarrior to
invoke the Eiffel compiler once. The .ess file must be mapped to the
EiffelS compiler in "File Mappings".

Ensure that the compiler in "File Mappings" for .e files is None, not
EiffelS, otherwise the Eiffel compiler will be invoked for every .e
file, even though it has already compiled them all. This is because
Eiffel compilers do their own dependency analysis, they do not need
external help of make files, environments, etc., to work out what to
compile. The downside to this is you must put all files where the
compiler can find them and put paths to libraries in your Library
dictionary.es2 file. On the upside, all Eiffel projects will be orga-
nized in a similar way.

Compiler reports: Class not declared as deferred although it has a deferred
feature, but does not report which file is the problem.

This is a known problem we have not been able to ascertain a fix to.
All other known errors report the error file correctly in pass 1.

Check recently modified files: if any have deferred features, ensure
the class is also declared as deferred. You might also notice the name
of the file in error in the CW build panel just before compiler termi-
nates.

Compiler reports errors on paths that do not exist on your machine.

If this is a project that you have copied from another machine,
remove the ES2 data folder.

Compiler hangs must reboot.

Check that you have not run out of disk space. The compiler has
reported that it cannot create or open compiler files to the IDE, but
these are not displayed for some reason. Free up space on your disk.

Compiler does not detect VTCG(2)

If you declare a generic type, but do not put any actual generic list,
EiffelS fails to report the VTCG(2) error. Obscure C syntax errors
will result. Workaround: Supply correct number of actual generics.

C compiler error

A rare and difficult to track error occurs that C compiler reports that
a function of the form _ETexpanded_INTEGER is not found.

Library descriptions 42
This rarely occurs when an expanded type is used as an actual
generic. If this happens and you have a simple example please report
it to Object Tools. Workaround—find a copy of
_ETexpanded_INTEGER in another .c file and copy it into the
erroneous file.

43 Interfacing to C
11. INTERFACING TO C

You can accomplish most interfacing to C in CodeWarrior can be done by
using a routine that is declared as external (rather than deferred or do). The
MOTEL library has many examples of this. However, if you need a more
sophisticated interface to C, including being able to create Eiffel objects
from C and accessing the internals of objects from C, you should use the
following include file in your C libraries. Interfacing techniques and the
Cecil library are fully described in Chapter 24 of Eiffel: The Language by
Bertrand Meyer.

#ifndef CECIL
/*--*/
/* Eiffel/S 2.0 Cecil include file */
/*--*/

#define CECIL 1 /* Cecil included */

/*--*/
/* Eiffel <-> C types */
/* */
/* Note: Cecil routines which return Eiffel objects of non-basic */
/* type return a pointer of type 'EIF_PROXY'. This may or may */
/* not be a pointer to an Eiffel object. To obtain a true */
/* pointer to the Eiffel object, use 'eif_access'. */
/* */
/* Warning: */
/* Any assumption about the true nature of EIF_PROXY's is */
/* non-portable. Using a proxy as if it were a pointer to */
/* an Eiffel object may cause havoc. */
/*--*/

typedef unsigned char *EIF_BIT;
typedef unsigned char EIF_BOOLEAN;
typedef unsigned char EIF_CHARACTER;
typedef double EIF_DOUBLE;
typedef long EIF_INTEGER;
typedef unsigned char *EIF_OBJREF;
typedef unsigned char *EIF_POINTER;
typedef char *EIF_PROXY;
typedef double EIF_REAL;

Library descriptions 44
/*--*/
/* Type descriptor */
/*--*/

typedef unsigned char *EIF_TYPE_ID;

/*--*/
/* Function pointer types */
/* */
/* Note: Cecil routines which return routine pointers return a */
/* pointer of type 'EIF_xxx_FN' or 'EIF_PROC'. To call the */
/* routine, use the 'eif_??_call' features. */
/* */
/* Warning: */
/* Any assumption about the true nature of 'EIF_xxx_FN' */
/* pointers is non-portable. Using such a pointer as if */
/* it were a routine pointer may cause havoc. */
/*--*/

typedef unsigned char *EIF_PROC;
typedef unsigned char *EIF_BOOLEAN_FN;
typedef unsigned char *EIF_CHARACTER_FN;
typedef unsigned char *EIF_DOUBLE_FN;
typedef unsigned char *EIF_INTEGER_FN;
typedef unsigned char *EIF_OBJREF_FN;
typedef unsigned char *EIF_POINTER_FN;
typedef unsigned char *EIF_PROXY_FN;
typedef unsigned char *EIF_REAL_FN;

/*--*/
/* Eiffel/S types needed for the implementation of Cecil */
/*--*/

typedef void (*EIF_S_V)(EIF_OBJREF, ...);
typedef EIF_BOOLEAN (*EIF_S_B)(EIF_OBJREF, ...);
typedef EIF_CHARACTER (*EIF_S_C)(EIF_OBJREF, ...);
typedef EIF_INTEGER (*EIF_S_I)(EIF_OBJREF, ...);
typedef EIF_OBJREF (*EIF_S_O)(EIF_OBJREF, ...);
typedef EIF_POINTER (*EIF_S_P)(EIF_OBJREF, ...);
typedef EIF_PROXY (*EIF_S_PXY)(EIF_OBJREF, ...);
typedef EIF_REAL (*EIF_S_R)(EIF_OBJREF, ...);

/*--*/
/* Eiffel/S runtime routines needed for the implementation of Cecil */
/*--*/

extern void ES2RT_bit_put (EIF_BIT, EIF_BOOLEAN, EIF_INTEGER);
extern EIF_BOOLEAN ES2RT_bit_item (EIF_BIT, EIF_INTEGER);
extern EIF_INTEGER ES2RT_bit_count (EIF_BIT);
extern EIF_INTEGER ES2RT_array_count (EIF_OBJREF);
extern EIF_POINTER ES2RT_array_to_external (EIF_OBJREF);
extern EIF_CHARACTER ES2RT_array_type_code (EIF_OBJREF);
extern EIF_INTEGER ES2RT_string_count (EIF_OBJREF);
extern EIF_CHARACTER *ES2RT_string_to_external (EIF_OBJREF);
extern void ES2RT_mem_adopt (EIF_OBJREF);
extern void ES2RT_mem_wean (EIF_OBJREF);
extern EIF_BIT ES2RT_mem_bit_create (EIF_CHARACTER *);
extern EIF_PROXY ES2RT_mem_string_create (EIF_CHARACTER *);

45 Interfacing to C
extern EIF_PROXY ES2RT_mem_array_create (EIF_POINTER,
EIF_INTEGER,
 EIF_TYPE_ID);
extern EIF_PROXY ES2RT_mem_create (EIF_TYPE_ID);
extern EIF_TYPE_ID ES2RT_type_type_id (EIF_CHARACTER *);
extern EIF_TYPE_ID ES2RT_type_generic_id (EIF_CHARACTER *, ...);
extern EIF_TYPE_ID ES2RT_type_bit_type (EIF_INTEGER);
extern EIF_INTEGER ES2RT_type_generic_count (EIF_TYPE_ID);
extern EIF_TYPE_ID *ES2RT_type_generics (EIF_TYPE_ID);
extern EIF_TYPE_ID ES2RT_type_typeof (EIF_OBJREF);
extern EIF_CHARACTER *ES2RT_type_baseclass (EIF_TYPE_ID);
extern EIF_CHARACTER *ES2RT_type_name (EIF_TYPE_ID);
extern EIF_TYPE_ID ES2RT_type_expanded (EIF_TYPE_ID);
extern EIF_BOOLEAN ES2RT_type_cecil_conforms_to (EIF_TYPE_ID,
 EIF_TYPE_ID);
extern EIF_S_V ES2RT_disp_proc_prep (EIF_PROC);
extern EIF_S_B ES2RT_disp_boolean_prep (EIF_BOOLEAN_FN);
extern EIF_S_C ES2RT_disp_character_prep (EIF_CHARACTER_FN);
extern EIF_S_I ES2RT_disp_integer_prep (EIF_INTEGER_FN);
extern EIF_S_O ES2RT_disp_objref_prep (EIF_OBJREF_FN);
extern EIF_S_P ES2RT_disp_pointer_prep (EIF_POINTER_FN);
extern EIF_S_PXY ES2RT_disp_proxy_prep (EIF_PROXY_FN);
extern EIF_S_R ES2RT_disp_real_prep (EIF_REAL_FN);
extern EIF_POINTER ES2RT_disp_rdispatch (EIF_CHARACTER *,
 EIF_TYPE_ID);
extern EIF_POINTER ES2RT_disp_ddispatch (EIF_OBJREF,
EIF_CHARACTER *);

/*--*/
/* Predefined values */
/*--*/

#define EIF_FALSE ((EIF_BOOLEAN) 0)
#define EIF_TRUE ((EIF_BOOLEAN) 1)
#define EIF_VOID ((EIF_OBJREF) 0)

/*--*/
/* Convenience features for some fundamental classes */
/* */
/* These features allow you to create and manipulate objects of */
/* type BIT, ARRAY and STRING in a convenient way. */
/*--*/
/* ARRAYs */
/*--*/

#define eif_array_count(o) ES2RT_array_count (eif_access(o))
#define eif_array_make_from_c(s,c,t)
ES2RT_mem_array_create((s),(c),(t))
#define eif_array_to_c(o) ES2RT_array_to_external
(eif_access(o))
#define eif_array_kind(o) ES2RT_array_type_code
(eif_access(o))

/*--*/
/* BITs */
/*--*/

#define eif_bit_count ES2RT_bit_count

Library descriptions 46
#define eif_bit_make_from_c(b) ES2RT_mem_bit_create((EIF_CHARACTER
*)(b))
#define eif_bit_item(o,p) ES2RT_bit_item((o),(p))
#define eif_bit_put(o,x,p) ES2RT_bit_put((o),(EIF_BOOLEAN)
(x),(p))

/*--*/
/* STRINGs */
/*--*/

#define eif_string_count(o) ES2RT_string_count (eif_access(o))
#define eif_string_make_from_c(s) ES2RT_mem_string_create(\
 (EIF_CHARACTER *)(s))
#define eif_string_to_c(o) ES2RT_string_to_external
(eif_access(o))

/*--*/
/* Object creation */
/* */
/* Note: The fields of an object created with 'eif_create' are all */
/* initialized to the proper default values. However, if the */
/* generating class of the new object has creation procedures */
/* then you have to call one of them to ensure that the new */
/* object satisfies the class invariant. */
/*--*/

#define eif_create ES2RT_mem_create

/*--*/
/* Object access */
/* */
/* To obtain a true reference to an Eiffel object from a pointer of */
/* type 'EIF_PROXY', you have to use 'eif_access'. */
/* */
/* Warning: Do not store the result of a call to 'eif_access' for */
/* future reuse! The object represented by the proxy may */
/* move. */
/*--*/

#define eif_access(p) ((EIF_OBJREF)(p))

/*--*/
/* Object protection */
/* */
/* If you want to store an EIF_PROXY for reuse in future activa- */
/* of a C routine, you must protect it to ensure that the garbage */
/* collector will not reclaim the object associated with the proxy. */
/* The feature 'eif_adopt' serves this purpose. */
/* */
/* If protection is no longer needed, use 'eif_wean' to unprotect */
/* the object associated with a proxy. */
/*--*/

#define eif_adopt ES2RT_mem_adopt
#define eif_wean ES2RT_wean

/*--*/
/* Type id's */
/*--*/

47 Interfacing to C
#define eif_base_class ES2RT_type_baseclass
#define eif_bit_type_id ES2RT_type_bit_type
#define eif_expanded ES2RT_type_expanded
#define eif_generic_count ES2RT_type_generic_count
#define eif_generic_id ES2RT_type_generic_id
#define eif_generics ES2RT_type_generics
#define eif_type_id_of_object(o) ES2RT_type_typeof (eif_access(o))
#define eif_type_id(n) ES2RT_type_type_id ((EIF_CHARACTER
*)(n))
#define eif_type_name ES2RT_type_name
#define eif_type_conforms_to ES2RT_type_cecil_conforms_to

/*--*/
/* Routine calls */
/*--*/

#define eif_proc(r,t) ((EIF_PROC_PROXY) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))
#define eif_boolean_fn(r,t) ((EIF_BOOLEAN_FN) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))
#define eif_character_fn(r,t) ((EIF_CHARACTER_FN) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))
#define eif_double_fn(r,t) ((EIF_DOUBLE_FN) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))
#define eif_integer_fn(r,t) ((EIF_INTEGER_FN) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))
#define eif_objref_fn(r,t) ((EIF_OBJREF_FN) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))
#define eif_pointer_fn(r,t) ((EIF_POINTER_FN) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))
#define eif_proxy_fn(r,t) ((EIF_PROXY_FN) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))
#define eif_real_fn(r,t) ((EIF_REAL_FN) \
 ES2RT_disp_rdispatch((EIF_CHARACTER *)(r),(t)))

#define eif_proc_call(fp) (*(ES2RT_disp_proc_prep(fp)))
#define eif_boolean_call(fp) (*(ES2RT_disp_boolean_prep(fp)))
#define eif_character_call(fp) (*(ES2RT_disp_character_prep(fp)))
#define eif_double_call(fp) (*(ES2RT_disp_real_prep(fp)))
#define eif_integer_call(fp) (*(ES2RT_disp_integer_prep(fp)))
#define eif_objref_call(fp) (*(ES2RT_disp_objref_prep(fp)))
#define eif_pointer_call(fp) (*(ES2RT_disp_pointer_prep(fp)))
#define eif_proxy_call(fp) (*(ES2RT_disp_proxy_prep(fp)))
#define eif_real_call(fp) (*(ES2RT_disp_real_prep(fp)))

/*--*/
/* Attribute access and reattachment */
/*--*/

#define eif_boolean_field(o,f) *((EIF_BOOLEAN *) \
 ES2RT_disp_ddispatch (eif_access(o),(EIF_CHARACTER *)(f))
#define eif_character_field(o,f) *((EIF_CHARACTER *) \
 ES2RT_disp_ddispatch (eif_access(o),(EIF_CHARACTER *)(f))
#define eif_double_field(o,f) *((EIF_DOUBLE *) \
 ES2RT_disp_ddispatch (eif_access(o),(EIF_CHARACTER *)(f))
#define eif_integer_field(o,f) *((EIF_INTEGER *) \
 ES2RT_disp_ddispatch (eif_access(o),(EIF_CHARACTER *)(f))
#define eif_objref_field(o,f) *((EIF_OBJREF *) \

Library descriptions 48
 ES2RT_disp_ddispatch (eif_access(o),(EIF_CHARACTER *)(f))
#define eif_pointer_field(o,f) *((EIF_POINTER *) \
 ES2RT_disp_ddispatch (eif_access(o),(EIF_CHARACTER *)(f))
#define eif_real_field(o,f) *((EIF_REAL *) \
 ES2RT_disp_ddispatch (eif_access(o),(EIF_CHARACTER *)(f))
/*--*/
/* Pointer checks */
/*--*/

#define EIF_VALID(p) (((EIF_POINTER)(p)) != ((EIF_POINTER) 0))
#define EIF_INVALID(p) (((EIF_POINTER)(p)) == ((EIF_POINTER) 0))

/*--*/

#endif /* CECIL */Index

Library descriptions 49
INDEX

Symbols
" (debugger) 28
.e files 7, 14
.es2 files 8
.ess file 7, 14, 41
_ETexpanded_INTEGER 41

A
Access paths 7
all (rcl) 19
array (debugger) 28
assertion monitoring 19–20

from debugger 19, 28
Auto-Inline 9

B
bit (debugger) 28
break point (debugger)

removing 26
setting 26
showing 26

Build Extras 7

C
C

interfacing to 43–48
C compilation 17
C/C++ Language settings 9
C/C++ Warnings settings 10
CECIL 43–48
check (rcl) 19
classes

special 34
clusters clause 35
comments 31
compiling 14–17
Creating a project 5–6
Creation class 10
Creation routine 10
Current object (debugger) 27
custom keywords 12

D
dbase files 15

debug (debugger)
disabling 29
enabling 28

Debug (EiffelS 2.0 Preference Panel) 10
debug (rcl) 19
debug keys (rcl) 19
Debugging 21–30
debugging

enabling 21
example session ??–24
object addresses 24

deep Current object (debugger) 28
deep object (debugger) 28
Don't Reuse Strings 9

E
Eiffel Source-Level Debugging

See debugging
EiffelS 2.0 Language preference panel 13,

18
EiffelS 2.0 Language settings 10
EiffelS 2.0 preference panel 14
EiffelS for UNIX 5
emain.c file 17
Enable bool Support 9
ensure (rcl) 19
ES2 data folder 12, 15, 16, 17, 18, 33
ES2 Data:Code folder 17
exit (debugger) 26
external 43

F
File Mappings 7
Final (EiffelS 2.0 Preference Panel) 10

G
Generated group 17

H
help (debugger) 30
hide clause 35
history (debugger) 27

Library descriptions 50
I
identifiers 31
Initialization (Linker) 11
installing 4
invariant (rcl) 19

K
keywords 37

L
LDL 33
libraries

creating 18, 36
flat 35
removing 36

library
description files 31
dictionary files 31–36

library description file 12–13
library description language

See LDL
library dictionary file 12–13
licences 2
line count 15
Linker preference panel 11
linking 17
Lite licence 2
literal strings 31
loop_invariant (rcl) 19

M
Mac OS Toolbox Eiffel Library

See also MOTEL 2
MacOS_main.c file 17
Main 11
main.c file 17
memory 8
Minimum Heap Size 8
MOTEL 2, 4

debugging and tracing 21
MWDebug 21

N
New Project 5

O
object (debugger) 28
open 33, 36
Optimize (EiffelS 2.0 Preference Panel) 10

P
pass 1 15
pass 2 16
pass 3 16
pass 4 16
paths 31
Pool Strings 9
Preferred Heap Size 8
Prefix File 9

Processor Target settings 8
Project name 10
Project Settings 7–12

R
rcb file 19
rcl file 19, 21, 28
Relaxed Pointer Type Rules 9
renaming 34
require (rcl) 19
run (debugger) 26
run to routine end (debugger) 26
run until (debugger) 26

S
single step (debugger) 26
SIOUX 22

line limitation 22
snap shot (debugger)

removing 27
setting 27
showing 27

source 33, 36
status (debugger) 30
string_cmd (debugger) 28
syntax errors 15

T
Target Settings 7
Termination (Linker) 11
trace lines (debugger) 29
trace lines off (debugger) 29
trace routine entry/exit (debugger) 29
trace routines off (debugger) 30
trouble shooting 39–42

U
use clause 15, 32, 34
Use Unsigned Chars 9

V
variant (rcl) 19
VTCG(2) 41

W

where (debugger) 27

	Contents
	1. Welcome
	1.1. EiffelS for CW Licences
	1.2. Suggested Configuration

	2. Installing
	2.1. Installation Procedure
	2.2. Example Projects

	3. Creating your own CodeWarrior Eiffel Project
	3.1. Creating a project
	3.2. Checking Project Settings
	3.3. Setting up EiffelS Compiler Information Files

	4. Compiling Your Eiffel Project
	4.1. Compiling Eiffel Files
	4.2. Compiling C and Linking

	5. Creating your own CodeWarrior Eiffel libraries
	6. Assertion monitoring
	7. Eiffel Source-Level Debugging
	7.1. Enabling the debugger
	7.2. Example Debugger Session
	7.3. Some conventions
	7.4. Debugger Commands

	8. Description and Dictionary Files
	8.1. Conventions
	8.2. Library dictionaries
	8.3. Library descriptions

	9. Keyword Details
	10. Trouble Shooting
	11. Interfacing to C
	Index

